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Abstract

Cooperation among nodes is fundamental for the operatiprobfle ad hoc networks (MANETS).
In such networks, there could be selfish nodes that use @®from other nodes to send their
packets but that do noffier their resources to forward packets for other nodes. Thgsop-
eration enforcement mechanism is necessary. Trust mode¢sbeen proposed as mechanisms
to incentive cooperation in MANETs and some of them are basedame theory concepts.
Among game theoretic trust models, those that make nodedégies evolve genetically have
shown promising results for cooperation improvement. Hemecurrent approaches propose
a highly centralized genetic evolution which render therfeasible for practical purposes in
MANETS. In this article, we propose a trust model based onrecomperative game that uses a
bacterial-like algorithm to let the nodes quickly learn gppropriate cooperation behavior. Our
model is completely distributed, achieves optimal coop@nasalues in a small fraction of time
compared with centralized algorithms, and adaffescéively to environmental changes.

Keywords: MANET, trust models, game theory, evolutionary algorithm

1. Introduction

Mobile Ad Hoc NETworks (MANETS) are infrastructurelesswetks formed by wireless
mobile devices with limited resources. Soydmstination pairs that are not within transmission
range of each other must use intermediate nodes as relaggn@€2001). The cooperation
among nodes is fundamental for the operation of MANETS, esimades that contribute with
their own limited resources, such as battery, memory andgssing capacity, should be able to
use the resources contributed by other nodes. Howeveiisieiiironment, there could be free-
riders or selfish nodes, i.e., users that want to maximize tven welfare by using resources
from the network to send their own packets without forwagdpackets on behalf of others
(Wrona and Mihonen, 2004). Thus, it is important to encourage nodes ticpzate in essential
network functions such as packet routing and forwardingabee the higher the cooperation
the better the network performance. In this sense, severstimod els have been proposed as
mechanisms to incentive node participation within the ekw(Mejia et al., 2009b). A trust
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model is a conceptual abstraction to build mechanisms feigagg, updating and using trust
levels among the entities of a distributed system. In otherda; the trust model allows the
establishment of trust relationships amonfjatient entities with some degree of credibility, for
a given action (Marti and Garcia-Molina, 2006).

Among proposals in the literature, trust models based oregheory are interesting because
they properly model the dilemma that a node has: to cooperateain trust, or not to cooperate
and save battery. To face this dilemma, several pure anddnsitrategies has been studied in
game theory, especially fiierent forms of tit for tat (Osborne, 2004). However, in a MANE
game conditions can change over time, for which we focus wst tmodels that use genetic
algorithms to evolve the strategies. These models are pimognin MANET because they can
dynamically adapt to the current network conditions.

In this article, we propose a trust model based on (1) a ga?)e, {rust evaluation mecha-
nism, (3) a way of coding the cooperation strategy and (4netealgorithm that allows a node
to evolve its cooperation strategy. The proposed evolulgarithimt introduces a low overhead
because itis completely distributed and easy to computkedd, it only requires local exchanges
among neighbors. Our algorithm works much like plasmid atign in bacterial colonies (Dale
and Park, 2004; Marshall and Roadknight, 2000) combinek svjtarallel cellular genetic algo-
rithm (Alba and Dorronsoro, 2008 ; Alba and Troya, 1999; @aat, 1998; Nowostawski and
Poli,1999). Through this procedure, individual nodesddlee strategies that locally maximizes
their paydf in terms of both packet delivery and resource saving. Theméidea is that, within
the network, there are some nodes that are willing to coopdrdeemed worthy, called normal
nodes. There are also some nodes that are expecting to ussdlieces of normal nodes without
contributing to the network, called selfish nodes. The ndtvemvironment is characterized by
the fraction of selfish nodes within the total population oflas in the network. For a given envi-
ronment, we measure the cooperation as the fraction of pmokiginated by normal nodes that
effectively reach their destinations. We measure the res@aweags in terms of the detection
and isolation of selfish nodes, since serving selfish nodestitotes a waste of resources. Al-
though these are global variables, the local giagtaximization is such that the whole network
increases the cooperation and, consequently, the throtigivfthout wasting scarce energy re-
sources on selfish nodes. Indeed, our trust mofiieliently achieves both high adaptability to
environment changes and quick convergence to almost dptimeperation and energy saving
values, as we show by simulation.

Itis important to mention that we are concerned only witfisieihodes, not malicious nodes.
Selfish nodes are free-riders that want to consume otheisimedeurces without supporting the
network with their own resources, but they are not intecksteindermining network security or
causing any damage.

The rest of the article is organized as follows. Section 2flyrireviews models for cooper-
ation and genetic algorithms to put our work in context. B&cB describes our game theoretic
trust model. Section 4 presents the simulation scenaridgtair parameters. Section 5 shows
the performance evaluation for our trust model and compiaregh the previously published
results of a centralized evolution model. Section 6 coreduitie article.

1A preliminary version of the algorithm was presented in a ecerice paper (Mejia et al.,2009a).



2. Background

In this section we briefly review cooperation models and tietadgorithms, to put in context
our algorithm which uses a non-cooperative game trust maadelan hybrid cellulgbacterial
evolution mechanism.

2.1. Models for Cooperation

Models for cooperation enforcement in MANETSs can be broatiyded in two categories
according to the techniques they use to enforce cooper@ilanias et al., 2006): credit-based
models and trust models. The former category is based ormatoincentives, whereas the later
is based on building reputation to enforce cooperation.

In credit-based models, the network tasks are treated agaerthat can be valued and
charged. These models incorporate a form of virtual cugréaaegulate the dealings among
nodes. The most widely-cited proposal of this type was thiced by Buttyan and Hubaux
(Buttyan and Hubaux, 2000). These authors introduce a curreniedaalglets. The exchange
of nuglets relies on a tamper-resistant security subsybging present in every node. Another
credit-based proposal called Sprite (Yale and Zhong, 2@@Res use of a public key infras-
tructure to deal with the problem of selfishness. Nodes upleaeipts to a Credit Clearance
Service (CCS), a central authority which is available whem todes are connected to the In-
ternet. Express (Janzadeh et al., 2009) is a work based dte.Spixpress tries to minimize
the cost of digital signatures by using hash chains. Expmkssuses an external trust entity
called Reliable Clearance Center (RCC). In general, the mh@iwback of credit-based models
is that they require the existence of either tamper-resistardware or a virtual bank, heavily
restricting their usability for MANETSs. An hybrid schemellee OCEAN (Bansal and Baker,
2003) uses both reputation to detect and punish selfish rhand a micro-payment compo-
nent to encourage cooperation. The credit is earned for ieamiediate neighbor and it cannot
be used to send packets in &dient route. A reputation scheme optimized for video stirgm
inspired in OCEAN has been presented in (Mu et al., 2010).theranodel called ad hoc-VCG
(Anderegg and Eidenbenz, 2003) is also a credit-based mdudeh introduces a second-best
sealed type of auction. To this respect, a pricing questi@es concerning the amount of the
payment a node should ask to forward packets. Intermediatesdeclare their respective prices
honestly. Honest behavior is assured by VCG mechanism ashbec-VCG is robust when only
one cheating node exists. However, it might fail in the pneseof collusions of nodes trying to
maximize their payments. An additional issue is the exeessverhead because ad hoc-VCG
requires complete knowledge of the network topology dutiregroute discovery phase.

On the other hand, models in which trust is the base for ca@bioer are envisioned as the
most promising solutions for MANETs because these modelaatchave the restrictions of
credit-based models. Trust models can frustrate the iotenof selfish nodes by coping with
observable misbehaviors. If a node does not behave coomtyathe dfected nodes, recipro-
cally, may deny cooperation. Generally speaking, in a tmustiel, an entity called the Subject
S commends the execution of an act@to another entity called the AgeAt in which case we
say thatfT{S : A a} is the trust level thaG has onA with respect to the execution of actian
(Sun et al., 2006). This trust level varies as the entitiesract with each other; i.e., if the Agent
Aresponds satisfactorily to the Subjé&;tS can increase the trust levE(S : A; a}. On the other
hand, if the subjecs is disappointed by the ageAt the corresponding trust level could be de-
creased by some amount. In this sense, a trust model helpalifect of a distributed system to
select the most reliable agent among several agédfgsng a service (Marti and Garcia-Molina,
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2006). To make this selection, the trust model should peotlie mechanisms needed for each
entity to measure, assign, update and use trust valuesrabaust models have been proposed
in the literature for improving the performance of MANET# (Mejia et al., 2009b), there is
classification of trust-based systems based on the thealretechanisms used for trust scoring
and trust ranking. Following this classification, we carttiar divide the trust-based proposals
in approaches based on social networks, information thegoaph theory and game theory.

In proposals based on social networks, nodes build theiv iethe trust or reputation not
only taking into account their own observation but also adersng the recommendations from
others. One of the first examples of a trust system based dal s@tworks is CONFIDANT
(Buchegger and Le Boudec, 2002). CONFIDANT works as an sitenof a reactive source-
routing protocol for MANET. Nodes monitor the next node oa tbute by either listening to the
transmission of the next node or by observing route protbebhvior. Any misbehaving action
generates ALARMs. Each node maintains received ALARMs ffoend nodes and ALARMs
produced by the node itself. In the improved CONFIDANT (Begber and Boudec, 2004),
authors provided a modified Bayesian approach for reputagipresentation, updates, and view
integration. When updating the reputation according tomenendations, only information that
is compatible with the current reputation rating is accepfehis approach is objective and ro-
bust, but it still leaves an opportunity for elaborate dttas to launch false accusation attacks (Li
and Wu, 2010). In (Michiardi and Molva, 2002), authors prep&ORE. CORE relies on obser-
vations and recommendations which are combined by a spetddlinction. The CORE scheme
is immune to some attacks because no negative ratings a&ds@and, thus, it is impossible for
a node to maliciously decrease another nodes reputatiomeVéw, two or more nodes may col-
lude (i.e., send positive rating messages) in order to asereéheir reputation. To prevent such
phenomena, the CORE implicitly provides some protectimtessubjective reputation has more
impact (i.e., weight) than the indirect. Finally, SORI (Bahand Baker, 2003) is another trust
model that also uses reputation spreading. In additiong@thvious ones, there are some trust
models that are based on social networks and that they adstuster-heads. The cluster-head is
a node who is elected to play a special role regarding the geanent of recommendations. An
example can be found in (Safa et al., 2010). In this propdisalprotocol organizes the network
into one-hop disjoint clusters then elects the most qudldigd trustworthy nodes to play the role
of cluster-heads. The proposed mechanism continuouslyrenshe trustworthiness of cluster-
heads by replacing them as soon as they become malicious.céscéuding remark for trust
models based on social networks, we would like to noticettimtalculation and measurement
of trust in unsupervised ad-hoc networks involves a verymlemaspect like rating the honesty
of recommendations provided by other nodes. Although thesedtorts like (Luo et al., 2009),
(Li and Wu, 2010) and (Zouridaki et al., 2009) that try to aidge this problem, it is still a hard
problem for systems that use recommendations. Furthermocgal trust models that also use
clusters add another problem, they require a dealer, whigst tve involved in the working of
other nodes, and this is hard to achieve in practical ad htveanks.

Regarding the proposals based on information theory, orteesk is (Sun et al., 2006), in
which the authors proposed a trust model to obtain a quiméitmmeasurement of trust and its
propagation through the MANET. However, the proposal i®tagcal and it does not include
an implementation specification. (Sherwood et al., 2006¢dees a trust inference algorithm in
terms of a directed and weighted Trust Graphwhose vertices correspond to the users in the
system and for which an edge from vertdr vertex|j represents the trust that nodeas in node
j. However, covering the whole graph is still a high complexibmputational problem.

Finally, there are several proposals that use game thedmgsel proposals can be further
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divided into cooperative and non-cooperative games (@&)d004). In cooperative games,
users form coalitions so that a group of players can adoptaioestrategy to obtain a higher gain
than the one it may be obtained making decisions indiviguatl cooperative games, the nodes
need to communicate with each other and discuss the seategfore they play the game. (Baras
and Jiang, 2005) and (Saad et al., 2009) are representatipegals of cooperative games for
MANET. Nevertheless, this type of games have the disadgargagenerating network overhead
due to the complex processes of coalition management. Ontlte® hand, non-cooperative
games are especially suitable in scenarios in which playpagbt have conflicting interests, and
each of them wants to maximize her own profit taking individiecisions (Felegyhazi et al.,
2006). Our proposal and many others that can be found intdratiure (Seredynski and Bouvry,
2009),(Seredynski et al., 2007),(Milan et al., 2006),(khy and Narayanasamy, 2008), (Wang
etal., 2010),(Ji et al., 2010), (Jaramillo and Srikant,@@ke based on a variation of the classical
non-cooperative game of the iterated prisoner’s dilemnmaggan which nodes can usefidirent
strategies. A further discussion of these proposals andrganson with ours is provided in
Section 5.3. Itis worth to mention that, in general, all themtioned models improve cooperation
results, but they still have somefiiEulties to be applied in MANET.

In this article, we focus on trust models based on game thsorge they capture very well
each node dilemma about deciding whether to cooperate dauhdhbe trust of peer nodes, or not
to cooperate and save scarce energy resources. In partigalocus on non-cooperative games
since nodes rely only on private histories and thus, thelycosglition overhead and possible
conflicting interests can be avoided. More specificallysttmodels that use genetic algorithms
for the evolution of strategies show promising results inNEY because they can adapt dynam-
ically the behavior of nodes to the current conditions ofleéwvork. In particular, we take as
reference model the centralized one presented in (Serkidstrad., 2007). This model is interest-
ing because the evolution algorithm achieves promisingit®segarding cooperation and energy
saving. However, we are still concerned about the highlyreéined nature and the slow conver-
gence of its evolution algorithm. Optimal strategies araivied by using a centralized entity that
runs a conventional genetic algorithm in afiriine way after a large number of interactions be-
tween nodes. For these reasons, in this article we propose-agoperative game theoretic trust
model in which strategies evolve on-line according to arithisted genetic algorithm without
requiring too much data exchange among nodes. Our modeadiexpiie distributed nature of a
MANET by using a local genetic information exchange. Oupailhm works much like plasmid
migration in bacterial colonies (Dale and Park, 2004; Malisind Roadknight, 2000) combined
with a parallel cellular genetic algorithm (Alba and Dorsono, 2008; Alba and Troya, 1999;
Cantupaz, 1998; Nowostawski and Poli, 1999). Through tfosedure, individual nodes select
the strategies that locally maximizes their pfiyin terms of both packet delivery and resource
saving. A brief summary about Genetic algorithms is intietliin the rest of this section to
better understand the proposal.

2.2. Genetic algorithms

In many complex optimization problems, an exhaustive $eafthe solution space is unfea-
sible. Genetic algorithms (GAs) are heuristic approachatare based on the genetic hereditary
processes of biological organisms. A canonical GA work$witpopulation of individuals,
where each individual represents a possible solution tgengiroblem. A fitness score for each
individual is assigned according to how it fits as a solutmthe problem. The higher the fitness
an individual has, the higher the opportunity it has to beaed for reproduction. This repro-
duction is done by crossing two individuals of the populataver, generating new individuals
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as dfspring that contain the best characteristics of the previneration. As generations come
and go, these best characteristics are spread througleenthie population. By favoring the
mating between the fittest individuals, it is possible tolesg@the most promising regions of the
solution space.(Holland, 1975; Whitley, 1993)

Generally, a GA performs four steps to obtain a new popuiatioitialization, evaluation,
selection and reproduction. The process is recursivelgatsa from the second step during a
given number of generations or until the solution convelgdland, 1975)

I. Initialization. In a GA, a genetic code, or chromosome, represents anyi@ola the
problem. The first population of chromosomes is typicallyd@amly generated.

II. Evaluation The mechanism used to measure the individual fitness te sloévgiven prob-
lem is called fitness function.

lll. Selection.The selection algorithm picks individuals out among therenir population to
participate in the next generation. The most common apprisacroulette-wheel selection,
where a selection probability is assigned to each inditidneomosome, proportionally to
its fitness.

IV. Reproduction. This is the process by which two parent chromosomes are fgicech
normally through the genetic operators of crossover anchtiout. Crossover is a sexual
reproduction between two parents, where some portionseop#inents chromosomes are
swapped to form a child. Then, the mutation operator altach €hild gene with a small
probability in order to ensure that no point in the searctcegzas a zero probability of
being examined.

2.2.1. Parallel Genetic Algorithms

Parallel genetic algorithms (PGA) are not only an extensiboanonic GA, but also a dif-
ferent dficient way to search the space of solutions for a given prolfidowostawski and Poli,
1999). In a PGA, the population is divided into subpopulaiand an independent GA is per-
formed on each of these subpopulations. The local seleatidnreproduction rules allow the
species to evolve locally, and diversity is enhanced by atign, i.e., by transferring genetic in-
formation among subpopulations. The processes of genetigteon and migration are repeated
until the solution converges.

The many parallel genetic algorithm models that can be fanride literature can be clas-
sified in island or cellular depending on their parallelisradg (Alba and Troya, 1999). In an
island PGA (iPGA), the whole population is divided into a feeparated subpopulations, or is-
lands, with many individuals on it, and an independent geradgjorithm is performed in each
island. After a certain number of generations, there is aatiign process by which the fittest
individuals migrate among islands in order to obtain genétversity (Nowostawski and Poli,
1999). In a cellular PGA (cPGA), the population is dividetbima large number of subpopula-
tions with a few individuals on it, and the genetic inforneatiexchange among subpopulations
is performed by overlapping subpopulations (Alba and Tra@99). The population in a cPGA
has a spatial structure that limits the interactions amaouiyiduals to just some small neigh-
borhoods. However, by neighborhood overlapping, optimedl solutions can spread across the
entire population (Nowostawski and Poli, 1999).

2.2.2. Plasmid Migration and Bacterial Genetic Algorithms
There are several genetic algorithms based on observeeriahbiehavior. Diferent authors
present them as microbial genetic algorithms (Harvey, }98%€&terial algorithms (Cabrita et al.,
6



2003), pseudobacterial genetic algorithms (Nawa et aB9),9ateral gene transfer (Ochman
et al., 2000) and plasmid migration (Marshall and Roadkhigb00) among others. In general,
these algorithms avoid the sexual reproduction, so theynateclassified as parallel genetic
algorithms, although they are extremely distributed. Heeedescribe two of these algorithms,
those on which we based part of our evolution process.

Plasmid Migration (PM) is based on the behavior of some baotlarshall and Roadknight,
2000). Plasmids are self-replicating extrachromosomahDiblecules that are not essential for
the survival of the bacterium but encode a wide variety ofegierstrains that permit a better
survival in adverse environments. Plasmid has the abdibettransferred among bacteria within
the same generation by allowing healthy individuals to d#égadasmids in the medium, so that
less healthy individuals can take these plasmids from thdiune This ability gives bacteria a
great adaptability to sudden environmental changes (DalePark, 2004). This analogy can be
used in genetic algorithms to spread high quality strarmts fitted individuals to the rest of the
population through the gene transfer operation.

On the other hand, in a bacterial algorithm, a chromosomévided! in p parts, and each
individual producesn — 1 clones of itself. The randomly chosggpart of them — 1 clones is
mutated and the best fitted part is replicated inrthiadividuals. After this mutation-evaluation-
selection-replacement process is repeated for albherts, the fittest individual goes to the next
population and the othen — 1 individuals die (Nawa et al., 1999; Cabrita et al., 2003).

Both plasmid migration and bacterial algorithms are grealgyprithms that, at each step,
make apparent good decisions without regarding for futoresequences and, as such, can lead
only to locally optimal solutions. In contrast, these sioing can be obtained very quickly,
enhancing adaptability at the cost of optimality (Weiss9&9 However, in many occasions,
in a well designed plasmid migration algorithm, the mobpilitf the individuals allows good
plasmid to spread all over the population, so that bettautigols can be obtained through a
more exhaustive search of the solution space. In this estiee propose an enhanced cPGA
algorithm that includes some greedy bacterial heuristicchieve fast convergence, optimality
and adaptability.

3. A Model for On-Line Distributed Evolution of Cooperation

In this section we describe our proposal, where both the éneduation mechanism and the
strategy evolution algorithm are designed to enhance theecgence speed and adaptability.
Furthermore, both trust evaluation and strategy evolusiencarried out in a distributed way
among the nodes of the network. In our trust model, the intenas among nodes are based on
the iterated prisoner’s dilemma under the random pairimyegéshibuchi and Namikawa, 2005).
Each intermediate node utilizes a strategy that defineshghétshould retransmit or discard a
packet that comes from a certain source node. The stratgggnde on two aspects: the past
behavior of the network when the intermediate node actedsmsiace, and the trust level that
the intermediate node has in the source node. The model ipriged of: (a) a trust evaluation
mechanism; (b) a game based network model; (c) a strategy{cra local genetic algorithm
based on plasmid migration to evolve the strategy in a higidiributed way.

We take as reference the centralized model of (Seredynsii,e2007). Essentially, the
similarities between the centralized model and ours aréeéngeme model and in the strategy
encoding. These similarities are kept to make the perfoomaomparison easier (see evaluation
results in section 5). However, both the trust evaluatiorthraaism (for better adaptability)
and the genetic evolution (for easy distributed computdtere totally diferent. On the other
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hand, the more close related work is the BNS proposal (Koynatid Narayanasamy, 2008),
which also uses a non-cooperative game model with a distgbevolution. In BNS, a node

decides the strategy to follow by changing to other playstrategy if it seems to be doing better.
Despite the distributed nature of this evolution stratélyg, paydr structure strictly encourages
cooperating strategies without taking into account thegneavings of discarding strategies.
A more detailed comparison with BNS and with other propo#izds also use non-cooperative
game models is provided in Section 5.3.

3.1. Trust evaluation mechanism

Each node maintains a trust table based on the observedibebhits neighbors. For ex-
ample, if nodeB is observing nodé\,, which is within its transmission range, it can know the
number of packets that has been senAto be forwardedn, and the number of packets that
has actually forwarded,. SoB can compute the forwarding rate Af as show in Eq.(1)

f,(B,A;n) = ”—: @

We can use a simple cumulative average to compute the forvgarate. For instancd3 can
update the forwarding rate éfby observing whether the" packet has been forwarded Byor
not. This is done by applying Eq.(2):

f(BA ) = %idi _(-Df(BAN-1)+d, (2)
i=1

n

whered; € {0, 1} is thei" observed decision.

Since the strategies are modified continuously by the nadsdetpt to environmental changes,
it would be unfair to have a long record of observed decisifithey were taken under a previous
strategy, diferent to the current one. Correspondingly, we decided ® itath account only the
most recentn observed decisions, so we compute the forwarding rate astheng average of
the decision sequence, i.e., the fraction of retransmiterkets among the previonspackets
received for forwarding.

The value of the memory depthy, obeys a tradeffi we would likem to be large enough
to obtain a fair evaluation of the forwarding rate, but we \goaiso likem to be small enough
to ensure that the forwarding rate actually correspondiéatrrent strategies (tuning ofis
discussed in Section 4). Computing the forwarding rate wiihite memory of deptm, requires
both the previous forwarding rate and the iastecisions as state variables, as we show in Eq.(3):

-1 f.(B,A;n—1)+dh
A tyn, g SOREGARD
fr(B’ A, n) = (3)

f.(B,A:n-1)+dy—d,_
%Zmﬁldn_izmr(”ann T n>m

With the current ratéAr(B, A; n), Bcan determine the trust level it should hav&\jT {B : A; n},
as shown in Table 1. For comparison purposes, we keep thersaiges on the fraction of for-
warded packets and the same corresponding trust valuestesdentralized model.

Finally, it is worth to mention that using a moving averagattbnly takes into account the
previousmobserved decisions may seem a subtle detail, but we inteditibecause it is critical
for the on-line adaptability of the strategies, as we wibhstin Section 5.
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Table 1: Relation between delivery rate and trust level

ﬁ(B,A;n) ‘ T{B: A;n}

09-1 3
0.6-0.9 2
03-0.6 1

0-03 0

3.2. Game-based network model

Each intermediate node that receives a packet should detigtner to forward it or to dis-
card it, according to its strategy. Each game starts withrtmesmission of a new packet from a
source node and ends either when the packet is deliveresidestination, or when an interme-
diate node decides to discard the packet. Once the game Ishefineach participant receives a
paydt according to the decision it took and its trust level on theree node. Since there are two
types of nodes, source nodes and intermediate nodes, tes tfpayd tables are maintained,
as shown in Table 2 (Seredynski et al., 2007). Theseffmpave been directly taken from the
centralized model for comparison purposes and also bet¢hegéave two good properties: a
successful transmission is the most rewarding event, aard th symmetry between the discard-
ing and forwarding payds with respect to the trust value, indicating that savinggnés as
important for each n ode as obtaining the trust of its neighbo

Table 2: Tables of payb

Sour ce Node Payoffs Intermediate Node Payoffs

- Trust Level of the Source Node
Transmission Status

T=3|T=2|T=1|T=0
Cooperate 3 2 1 0.5
Discard 0.5 1 2 3

Successful 5
Failed 0

The forwarding or discarding decision of an intermediatdenis observed by all nodes pre-
ceding it in the path. In addition, a node that receives a gacdn consider that all its preceding
nodes have cooperated.

3.3. The strategy

We use a strategy codification similar to the one used in thea&ed model. The strategy
that a node follows when it is acting as intermediate noded®ded by a string of bits, in which
each bit represents the decision of discardiDy (bit = 0) or cooperating@) (bit = 1). The
strategy depends on the following parameters:

e The trust level that the node has in the source node.

e The transmission status of the two previous games that tHe has played as source,
which could be succesS) or failure (F).
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The resulting strategy has 16 bits, as shown in the examgaeegy of Table 3. For instance,
according to the strategy of Table 3, an intermediate nodldamivard a packet if it has a trust
level of 1 in the packet’'s source and if its two previous padkansmissions as source were
successful (8 bit of the strategy, from left to right).

The strategy is evolved by means of a genetic algorithm. Aipdiy is to randomly choose
an initial strategy and then start evolving it. However, tbevergence speed to optimal cooper-
ation can be improved if some bits of the initial strategy se€to particular values. In addition,
nodes cooperate if they have not played two times as soutc@vgediscuss these issues in
Section 3.4).

Table 3: Strategy coding, example strategy 0001 0011 0101 011
Source Trust Level ojojof1|11j1(2|2|2]2

Transmission Status —2

Transmission Status —1

O|mMlwn|w
O|lnln w

Oln|T|w

O|m|Tlw

O|lm|Tm| o

F|S|S|F|F|S|S|F|F|S|S
S|F|S|F|S|F|S|F|S|F|S
Current Decision D/ID|C|D|D|C|C|D|C|D|C

3.4. Distributed Bacterial-like Evolution Algorithm

A genetic algorithm is used to maximize the fitness or meanff@f each node. The de-
sign of the evolution algorithm took us several iteratiogpstwhere we probedftiérent design
options to balance the fiierent issues of the learning process. As a result, next veepteur
evolution algorithm and discuss its design. Furthermar&action 5, it is shown that our pro-
posal clearly outperforms the centralized algorithm imtgiof cooperation, convergence speed,
energy saving and adaptability.

In our distributed bacterial-like algorithm, we evolve #teategies on-line during the life of
the network. A successive sequence of games takes placgydhi$ network life. A game is a
successful or failed packet transmission. In a game, a sourde selects the most trustetiop
route among possible routes and sends its packet through it. The gameccessful if the
transmitted packet is received at the destination. When a had playedr times as the packet
source, we said that it has completed a Plasmid Migratioio@€PMP). At this moment, an
evolution step must take place, i.e., the node exchangestigenformation with its neighbors
and evolves its strategy.

We combine the plasmid migration concept with a classiclilllee genetic algorithm by al-
lowing each node to receive the genetic information fromitalbne-hop neighbors in order to
start a reproductive mechanism to construct a new strakegyeproduction we use the classical
one-point crossover and mutation processes. The bagiaishid migration is introduced by
allowing each node to keep its best previous strategy soitlaairing the current plasmid migra-
tion period the new strategy did not increase the fitnessplthstrategy can be restored. More
specifically our model works as shown in Algorithm 1.

Attime 0, nods starts with an initial random strategy(0), whose fitnessf; (0), is evaluated
during the first PMP, i.e., during the transmission of its disst R packets (¥ line of Algorithm
1). Like plasmid genes, nodéeeps a record of the best proven strategy so far, i.e., lifeajt't
PMP the current strategy/(j) is worst than the previous ong(j—1), node restores its previous
strategy and fitness{7and 8" lines of Algorithm 1). Nodé exchanges its strategy(j) and its
corresponding fitnesk(j) with its one-hop neighborg(, and selects a pair of potential parents,
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Algorithm 1: Bacterial-like evolution pseudo-code

// Node i goes on from the O PMP
inputs. At each PMP, the set ok current neighborsk’
outputs: The sequence of strategig$j) and fitnesse$ (j) at thej" PMP, forj = 0,1,2, ...
begin
S(0) < GenerateStrategy() ; // Generate the initial strategy
j«<0; // Time index, expressed in PMPs
while truedo
fi(j) < GetFitness(S(j)); // Evaluate this strategy (play some games)
if (j>0)&& (fi(j) < fi(j—1))then // The previous strategy was better
s(j) < s(j—1); // Restore the previous strategy
fi(j) « fi(j—1); // and the previous fitness
end
K « GetNeighborhood(i) ;
p; < RouletteWheel (K U{i}) ; // Get first parent
P2 < RouletteWheel (K U {i}) ; // Get second parent
while p; == p, do
‘ P2 < RouletteWheel (K U {i}) ; // We need two different parents
end
if fi(j) =Mean(fy,(j), fp,(j)) then
‘ S(j+1) < s(j); // Changing the strategy is not worthy
else
S(j + 1) « Crossover (sp(])),Sp2(j)) ;
S(j + 1) « Mutation(s(j + 1)) ;
end
j++;
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p: and p,, one of which can be nodeiself (lines 10" to 15" of Algorithm 1). This selection
is performed through a roulette wheel process. In a roulgkteel, a selection probability is
assigned to each individual strategy@s= fx/ Ynex fn, k € K, and each parent is randomly
selected according to this distribution. If the mean fitnelsthe selected potential parents is
worse than the fitness of the current strategy(a@d 17" lines of Algorithm 1), node keeps
its current strategy for the next PMP. Otherwise, the setéparent strategies are combined to
construct a child strategy(j + 1). In this last case, the function performs a one point enoss
where half of the genes are taken from one parent and the lo#lifeare taken from the other
parent. Finally, the child strategy goes through a mutgtimeess, where each bit is flipped with
a given probability. The resultant strategy is the one thiitbe used in the next PMP. This
process is repeated during the life time of the network.

Regarding the initial random strategy, corresponding ¢édftimctionGenerateStrategy ()
in the 29 line of Algorithm 1, we make some a priori decisions about eduits in order to speed
up the convergence of the algorithm, as shown in Algorithim®articular, we fix six bits of that
initial strategy: an intermediate node cooperates wherdhece node has the highest trust value
and the network has delivered at least one of its previougtetets (i.e., according to Table 3,
bits 14, 15 and 16 are set to Cooperate -7th line of Algorithnimilarly, an intermediate node
discards a packet when the source node has the lowest ttustarad the network has failed in

11



delivering at least one of its two previous packets (i.a@s bj 2 and 3 are set to Discard -8th line
of Algorithm 2). We have validated these asumptions by satiomh since this pattern was found
in th e final strategies after convergence under veffedint simulation scenarios. Finally, the
ten remaining bits of the initial strategy are randomly @oas 0 or 1 with probability/2 (lines

3 to 6 of Algorithm 2).

Algorithm 2: Pseudo-code for randomly generating a new strategy

1 GenerateStrategy {

2 senull; // strategy to be returned

3 for (bit = 4;bit < 14;bit + +) do

4 r — Randonf); // 0 or 1, each with probability 1/2

5 SetStrategyBit (S bit,r) ; // Set the given bit of S randomly

6 end

7 s« OR(s,0000000000000111)// conditions for initial collaboration
8 S« AND(s0001111111111111)7/ conditions for initial discarding
9 returns,

=
o

}

An important issue to address is how a node should behave &etiinning of network op-
eration, when it has tried to send less than two packets asesmode, so no information is
available about network behavior. In this case, we decitiatithe node should try to immedi-
ately start building a good reputation among neighborg, iassuiggested in (Axelrod and Dion,
1988). Therefore, when the node has transmitted less thapaekets, the decision made as
intermediate node is always cooperate, regardless of tiselavel it has on the current source
node. The last issue we have to consider is how to managephtation of unknown nodes. In
this case, the initial reputation level assigne®ise

The steps followed to design our algorithm are briefly sunirearnext. First, we tried a
greedy plasmid migration algorithm in which each node erglea its strategy with the first
neighbor it founds and, if the neighbor’s fithess is higheplaces its own strategy with the
acquired one. By simulation, we found that this simple plasmigration algorithm quickly im-
proved cooperation but the solution achieved was not vexsedio optimal cooperation. Next, we
tried a chromosomal cellular algorithm, in which a standgedetic algorithm was run among
neighbors. The genetic information was exchanged amonghopeneighbors and each node
performed a roulette-wheel selection, a crossover and ationfprocess with the received strate-
gies. This approach yielded strategies that reached haglogreration ratios than greedy plasmid
migration. However, there were two problems: firstly, cogesce to the maximum cooperation
was slow, and secondly, sometimes cooperation suddenbyddcbecause nodes were quite
disposed to change their strategies (i.e. they did not keed gtrategies for too much time).

As a conclusion of the previous discussion, we devise anithydgorithm that mixes the
previous ones. Our algorithm uses chromosomal crossowemanation, and also allows for
plasmid attributes such as the restoration of previousegfies or the possibility for a child to
refuse the genetic material of its parents. This designeétiolution algorithm allowed us to find
a good trade-f between the bias error (where the strategies are not clasgkrio optimal) and
the variance error (where the strategies vary even to the pbforgetting good solutions). This
process was particularly challenging because, in our proplve have a double criterion: we
need to get both a good cooperation level among normal ntalesaiimize the throughput) and
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an dfective isolation of selfish nodes (to minimize energy congstion). Indeed, many design
options led to truly optimal cooperation values, although s$elfish nodes were not completely
isolated; other design options we tested were very goodvimganergy resources from selfish
nodes, but at the cost of lower cooperation among normalsiod&gorithm 1 is the result of
such design procedure, where we weighted those criteria té additional requirements of
fast convergence and good adaptability. Furthermore, ttended exploration of the solution
space is due to both mobility and neighborhood overlap. &hsires the convergence to almost
optimal cooperation values.

As a result, the foremost characteristics of our evolutigo@thm are its distributed imple-
mentation and its convergence speed. These features maikgorithm readily implementable
in a MANET since we exploit the natural structure of the netwio two ways:

e The evolution is carried out in a distributed way throughelateighborhoods.

e The genetic information is quickly disseminated all over tietwork after a few PMPs
since these neighborhoods highly overlap through mobility

4. Simulation

One of the main goals of the work presented in this article devise a distributed algorithm
to evolve the cooperation strategy of nodes. The requir&fen this algorithm are fast con-
vergence to maximum cooperation and high adaptation togthgrtooperation conditions. To
test and develop our design, we could have used one of s@gevalful simulators such as ns-2
(NS2, 2009), Opnet (OPNET, 2009) or Qualnet (QUALNET, 20@®)ong others. All of them
are known for having appropriate libraries for wireless ad hetworks. However, we decided
to develop a custom-made simulator in Java with a simplifieidvark model (about mobility,
routing etc.) because we wanted to measure, in an isolatgdtiaa cooperation achieved by
our proposal with respect to the maximum theorical coopmratAlso, a controlled design of
the network allows us to observe and analyze tiiects of our design choices isolated from
the interactions of physical, multi-access, routing aadspo rt protocols. In particular, in our
simulator, the mobility model and routing protocol are esmnted by the random selection of
paths and neighborhoods. Finally, it is worth to mentiort ti@ only our algorithm has been
implemented but also the centralized one for comparisopqa#s. The simulator and its main
parameters are descrived next.

4.1. Simulator

In our simulation platform the network is composed of a papiah of mobile nodes divided
into two groups: the normal nodes, which are willing to caape if deemed worthy, and the
selfish nodes, which are free-riders that discard everygiackransit. The environment, which
is characterized by the fraction of selfish nodes among th@enpopulation, can be programed
to change dynamically during the simulation by the coneersif some nodes from normal to
selfish and from selfish to normal. The network simulatiorgpesses through the execution of
games, or packet transmissions, between randomly selpaiesiof sourcklestination nodes.
For each sourgdestination pair, several randomly selected paths arblettad. In a single
game, once a path has been chosen, the source node tratsip#skiet and each intermediate
node in the path decides to forward or discard the packetdirgpto its own strategy. As men-
tioned in section 3.2, the forwarding or discarding decisib an intermediate node is observed
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by all nodes in the path up to the destination (if the packevexd there) or to the discarding
node, if the transmission failed. The packet transmissiogéme) succeeds if the packet arrives
to the destination, and it fails if some intermediate nodalids the packet. After a specified
number of games, the genetic information exchange takes plaong neighbor nodes to run an
evolution step. This way, we can observe the evolution atsgiies according to the programmed
change of environment conditions.

The mobility is considered through two mechanisms: a randel@action of a set of neigh-
bors for each node at each plasmid migration period, anddorarselection of the path at each
single game. In the first mechanism, at the moment of a plasmygdation period, a set of six
neighbors is randomly selected for each node, and the éwolptocess goes on within these
neighborhoods. The neighborhood size is chosen in ordemttehtypical cellular hexagonal
geometry with nodes in the vertices and the centers of eachgba. In the second mecha-
nism, when a packet is to be transmitted between a source dadtimation, a path length is
randomly chosen according to a probability mass fundignGiven the path length, the num-
ber of routesy, is randomly chosen according to a conditional probabitigss functiorP,,.
For performance evaluation and comparison purposes, thesdistributions are taken from
(Seredynski et al., 2007) (see Table 4). Among the discdveretes, the source node chooses
the most trusted path, which is the one with the highest grodfithe forwarding rates of the
participating intermediate nodes, according to the olagEms made by the source node.

Table 4: Probability distribution of path hopBy) and number of discovered paths given the lengn).
Number of hops, h

2 3 4 5 6 7 8
Ph 04]03| 01 | 005|005 |0.05]| 005
Pyn 05/05| 06 | 06 | 06 | 08 | 08
Pan 03]03|025|025| 025|015 | 0.15
P3n 02]02|015| 015| 0.15 | 0.05 | 0.05

For the evolution algorithm, the cross point is establisaethe & bit, which marks the
difference between the strategies for trusted and untrustedesnades. If the crossover takes
place, each bit of the children strategy mutates with prityab.001. All the simulation results
are presented as the average of 60 independent replicas gi/#n experiment.

Finally, our algorithm requires appropriate values for tivenber of observed decisions that
a node will keep in memoryn, and for the number of games that a node will play as source in
each plasmid migration perio®. In the next section, we use some simulation experiments in
order to set these parameters.

4.2. Tuning the Parameters of our Algorithm

Our proposal includes the capacity of on-line adaptatiomthis efect, it is important that
the trust values among nodes reflect, as much as possibleghlgior of their current strategies.
Therefore, taking into account all the past events (havinménite memory) is not appropriate
for our algorithm, so we use a finite memory of depth This memory allows us to store the
previousm decisions as state variables for updating the fraction eéoled forwarded packets.
Regarding this memory, notice that there is a traffesse would like a long memory to better
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evaluate the trust placed in each node, but we would like @lsbort memory in order not to
judge the nodes based on outdated behaviors. After sometgyiis, we concluded that using
the last three observed decisions leads to optimal coapenattios. Furthermore, the value of
m = 3 gives four possible forwarding rates (¢312/3 and 1), with which we can select the four
corresponding trust values of Table 1.

The second important parameter is the number of times a rlagle @s source in a plasmid
migration periodR. Again, a long value oR would allow a better evaluation of the fithess of
each strategy, but at the cost of increased convergenceticheeduced adaptability. So, for the
purpose of deciding an appropriate valueRpfive computed the cooperation evolution RE
10, 25, 100 and 300 packets, undefatient number of selfish nodes within the population of 100
nodes. Recall that the cooperation is measured as thedfnaatipackets originated in normal
nodes that gectively reach their destinations.

(a) 0% selfish nodes (b) 20% selfish nodes

Cooperation
Cooperation

10" 10 10° 10" 10 10°
Average number of packets sent per node Average number of packets sent per node

(c) 50% selfish nodes (d) 60% selfish nodes

10 rounds

— — —25rounds
—-— 100 rounds

0.8 1 0.8 300 rounds

Cooperation
Cooperation

10" 10 10° 10" 10' 10 10’ 10*
Average number of packets sent per node Average number of packets sent per node

Figure 1: Evolution of cooperation for fiierent number of selfish nodes andfelient number of packets per node in a
plasmid migration period.

This cooperation is shown in Figure 1, where the cooperatinang normal nodes is plotted
against the average number of packets transmitted per im@igarithmic scale. Given a trans-
mission rate, this average number of packets transmittedquke becomes a measure of time, so
we are plotting both the convergence speed and the maximhievad cooperation value. In all
cases, the cooperation converges to the same steady Valtidise speed of convergence varies
both withR and with the fraction of selfish nodes. With no selfish nodéguie 1.a), a value of
Ras small as 10 produces fast convergence times (less thgra2Rets per node) to the optimal
cooperation value of 1, while this time increases to 250 et;l600 packets and 4000 packets
for R = 25, 100 and 300, respectively. With 20% of selfish nodes (€idub),R = 10 seems
too small to obtain a good evaluation of the strategies. IEampare this ca se to that obtained
by greater values d®, we get both a longer convergence time and a reduced maxirohievad
cooperation. In this case, a valueRbf 25 packets per node seems to be the best choice but,
with greater fractions of selfish nodes, 100 packets per imodeplasmid migration period not
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only show better convergence times but also slightly higlobieved cooperation values (Figures
1.c and 1.d). In the four environment cases, the converg@mes were unacceptable whBn=
300 packets. So, according to previous analysis, and takiogaccount that small values of
R also generate greater transmission overhead due to freglasmid migration processes, we
decided to use a PMP & = 100 packets per node.

4.3. Centralized Algorithm Implementation

As we previously mentioned, we have also implemented thealeed evolution algorithm
presented in (Seredynski et al., 2007). For comparisongsegand to better understand both
proposals, in this section we introduce a more detailedrge®m of this approach.

In the centralized model, nodes start with a randomly geedratrategy. Then, series of
tournaments are played to calculate the giyat nodes will receive for their actions. The fithess
of each player’s strategy is evaluated as the averagdifyagoevent. According to this fitness, a
centralized entity, which knows all current strategies finésses, selectd\g, strategies through
a roulette wheel mechanism, whe\g is the number of participating normal nodes, i.e., nodes
that are willing to cooperate if they consider it advantageoApplying a standard one point
crossover and a standard uniform bit flip mutation over t@dgestrategies, the centralized entity
generates a set My new strategies in order to distribute them among the norrodés, and
the whole process is repeated during a certain number ofaimes. The performance results
of the centralized approach show that the strategies ewaeerding to dierent (but static)
environments , where an environment is characterized byendraction of selfish nodes, i.e.,
nodes that always decide to discard every packet in trdfisially, to compare both approaches,
we need to consider the same networkfica Unfortunately, the centralized model is presented
in terms of rounds and tournaments instead of transmittekgta so we need to calculate the
average number of packets per node per generation.

More specifically, a tournament in the centralized modelléy@d among 50 nodes, ran-
domly selected from a total population of 100 nodes. Eachnament is composed of 300
rounds. A round is composed of 50 (successful or failed) glatknsmissions or games, one
per participating node. Each of the nodes of the populatiostmparticipate as source in at
least two tournaments per generation. Since the probatiiitt a given node is select&dimes
in n tournaments ig(k,n) = (E) 27", the probability that a given node is selected more than
once inn tournaments is + q(0O,n) — q(1,n) = 1 - (n+ 1) 2",n > 1. We are interested in
the probabilityF(n) that, by then" tournament, the node that has participated in less tourna-
ments has already been selected more than once. This is teqtied probability that any of
the nodes of the population has been selected to participateo or more of then tourna-
ments, i.e.F(n) = [1 — (n+ 1) 27", assuming independence among nodes. Correspondingly,
the probability of requiring exactly tournaments in order for all the nodes to participate in
at least two tournaments B(n) = F(n) — F(n - 1),n > 1. According to this distribution,
the mean number of tournaments is3@f. In conclusion, in the centralized model, there are
1156tournamentggenerationx 300roundgtournamentx 50 packetground + 100nodes=
1734 packets per generation per node, in average.

4.4. Maximum Cooperation
As we previously mention, one of the main reasons that ledd dsvelop a custom-made
simulator with a simplified network model (about mobilitguting etc.) is to be able to compute

2This result we obtain theoretically has also been verifigihdithe simulations.
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the maximum theoretical cooperatidDy ... Next, we develop a theoretical expression for the
maximum cooperation achievable under an optimal stratethyperfectly computed trust values.
For this purpose, we assume that the selfish nodes are cetypbintified and that, with this
information, the normal nodes cooperate among them andrdishe packets of selfish nodes.
This is the ideal condition that any trust model would likeatthieve, where packets will be
forwarded if they find at least one path composed exclusieélgon-selfish nodes. In what
follows, we will use the following notation

e N is the total number of nodes in the network

Ny is the total number of normal nodes among thaodes of the population

Py, is the probability that a path h&shops (see Table 4).

Prn is the probability of finding routes given that the path lengthiisiops (see Table 4).

B(h) is the event that there are no selfish nodes antragndomly selected nodes.

o Ais the event that a packet finds at least one route made ouiséxally of normal nodes.

According to the discussion above, a packet will reach thetiltion through ar-hop
path if at least the firsh nodes of the path are normal nodes (the destination can bifisi se
node). Since the nodes of the path are randomly selectepdabability of finding a consecutive
sequence dfi normal nodes is given by Eq.(4)

Nn —ii @

h-1
PrigM] = [ | =
i=0

Correspondingly, the probability of having at least ondigielnode in arh-hop path is -
Pr[Bh]. So, the probability that each one pfoutes ofh hops has at least one selfish node is
(2 - Pr[Bh))" and, consequently, the probability that at least one ofrthsutes is composed
exclusively of normal nodes is4 (1 — Pr[Bh])". Since the probability of finding routes of
h hops isPy, - Py, the probability that a packet finds at least one path contbeselusively of
non-selfish nodes is given by Eq.(5).

Crmax = Pr[Al = > " PuPrn(1 - (1 - P, [B(M)])") (5)
h r

As we said before, this is the ideal fraction of packets adggd in normal nodes that reach
their destination, i.e., this is the maximum cooperati®f,y.

5. Performance Evaluation

Figure 2 compares the maximum cooperation given in Eq.(8) the maximum cooperation
values obtained with the centralized and distributed aigais as a function of the fraction of
selfish nodes in a population of 100 nodes. Recall that weune#se cooperation as the fraction
of packets originated by normal nodes thfieetively reach their destinations. Figure 2 shows
that not only the values achieved by our distributed baaltdikie algorithm are higher than values
obtained by the centralized model, but also that our algariattains cooperation values very
close to the optimal ones, especially under a low fractiosetfish nodes.
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Figure 3: Evolution of Cooperation under foufférent environments.

Figure 3 shows the fraction of delivered packets for botimadrand selfish nodes as a func-
tion of the plasmid migration periods. Figures are obtaimeder diferent percentages of selfish
nodes, using the selected PMP lengtiRof 100 packets. It can be observed that our evolved
strategies not only achieve a high cooperation among nonodés but alsofeectively isolate

18



the selfish nodes by reducing their delivered packet ratia tegligible value. These results
imply the achievement of a high throughput, without a wastenergy in forwarding packets of
selfish nodes (i.e. nodes save battery).

5.1. Comparison centralized vs distributed
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Figure 4: Comparison of centralized and distributed models.

Figure 4 shows the cooperation among normal nodes for ouehaodi for the centralized
one as a function of the average number of packets transhpiienode and the percentage of
selfish nodes. Again, a PMP correspondRte 100 packets sent per node. On the other hand, a
generation in the centralized algorithm corresponds t@l bégkets sent per node, as previously
discussed in Section 4.3. The first observation is that airidited algorithm converges much
faster than the centralized algorithm: while the formemiess between 500 and 2000 packets
(from 5 to 20 PMP), depending on the environment, the latguires hundreds of thousands
of packets to converge, corresponding to hundreds of gtorsa This is an expected result,
since the distributed nature of our algorithm allows a moegdent execution of the evolution
process. The second observation is that the final cooperegioes achieved by our distributed
algorit hm are also significantly higher than those of theredimed one. This is not surprising if
we consider that each neighborhood can evolveftemint solutions, so that the overlapped and
mobile neighborhoods allow a more complete explorationexpdoitation of the search space.

5.2. Dynamic environmental changes

Finally, we verify whether or not our distributed algorittadapts properly to dynamic envi-
ronmental changes. To do so, we change the number of selfismm the fly during a single
simulation by making some normal nodes to become selfishamesice versa.

Figure 5 shows the fraction of normal nodes and the cooperatlues obtained by normal
and selfish nodes as a function of time (in PMPs). In the firdtgfdhe Figure, each 50 PMPs a
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Figure 5: Adaptation of the cooperation to environmentahges.

node switches its behavior from selfish to normal. After 2B8IPs, nodes start becoming selfish
again with the same frequency (one node changes its beleadhr50 PMPs). This happens until
4000 PMPs. Then, sudden changes take place at random timtes. Figure, it can be observed
that the cooperation evolved in such a way that it adaptechth @ew environment in just a
few PMPs, keeping the network at optimal cooperation vatoest of the time. Notice also that
nodes that became selfish were not able to keep their reputdihis means that our distributed
genetic algorithm is veryfeective in detecting and isolating selfish nodes and, as dusion,
selfish nodes do not cause a relevant waste of energy of atygemodes within the network.

In order to analyze in more detail how the adaptation takaseplwe plot in Figure 6 a
more detailed simulation, in which the environment changetsveen 60% and 100% normal
nodes every 20 PMPs. At the beginning, with the initial randstrategies, both normal and
selfish nodes get very low cooperation from the network litha network runs, there is a slow
adaptation towards optimal cooperation among normal nadésIimost total isolation of selfish
nodes (this takes around 12 PMPs). When the selfish nodedaitc behavior to the normal
one, nodes quickly learn the new cooperation conditionscprickly start cooperating. In this
last case, convergence takes only 5 PMPs (compared with2tiRMPs of the previous case).
Finally, notice that when a normal node becomes selfish atf@metwork takes approximately
3 PMPs to detect it and isolate it.

5.3. Comparison with related work

In this section, we compare our proposal with other relatedks/for cooperation enforce-
ment in MANETS which are also based on non-cooperative gamuethis respect, in (Seredyn-
ski and Bouvry, 2009), the authors present and analyze eatiegptl system similar to (Seredyn-
ski et al., 200P. In this new work, authors keep most of the system structti(eredynski

3Remember that (Seredynski et al., 2007) has been used in itle agt reference model for comparison purposes.
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Figure 6: Evolution of cooperation under “step” environmgatsitions.

et al., 2007) but they change the encoding of the stratediegéesmediate nodes. In particular,
in the new proposal, the cooperation behavior during thoesecutive time frames of fierent
length are included in the codification of the strategy. Wwath to mention that this new work
only studies static scenarios (environmental changesamonsidered) and that authors assume
a high interaction between nodes, increasing the numbeuaids with respect to their previous
work. In addition, the analysis presented in (SeredynsHi Bauvry, 2009) is not focused in
measuring the level of cooperation achieved, but it is fedus analyzing which are the most
popular strategies after several generations. The maiciusion of their work is that the popu-
lar strategies can be seen as variations of tit-for-tathmitione of them resulted evolutionarily
stable in their system. In this sense, another variationt-dbit-tat called generous tit-for-tat
(GTFT) has also been proposed to be used in MANET (Milan e28D6). This strategy partly
alleviates the impact of environmental changes by assutheigthe nodes may be generous to
contribute more to the network than to benefit from it. Howe®s pointed in (Ji et al., 2010),
it is difficult to extend GTFT to a multi-player game scenario like eménd transmissions in
multi-hop multi-node MANETSs. In our proposal, the overafiavior of the network is opti-
mized by considering the previous forwarding actions ofsbierce node and the network within
the strategy code. Then, these strategies evolve gemgticalchieve an optimal behaviour.

On the other hand, a very close related work is presentedaméthy and Narayanasamy,
2008). This work uses non-cooperative game theory with ailolised evolution based on BNS
(Best Neighbor Strategy)(Komathy and Narayanasamy, 2@0#Which a node decides the strat-
egy to follow by changing to other player’'s strategy if deenveorthy. The BNS proposal
distributes the evolution process among the nodes, butagdfpstructure strictly encourages
cooperating strategies without taking into account thegnseavings of discarding strategies.
Despite the distributed nature of this evolution strategy,proposal is dferent from (Komathy
and Narayanasamy, 2008) in three aspects. First, in ouopabphe payfis not only reward
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cooperation but also reward the energy savings of discgrstimtegies. This payiostructure
models better the natural dilemma a node faces, and alscagtdficance to the emerging coop-
eration, because discarding strategies can also give aggaff. Second, in our proposal each
node’s strategy depends on the trust it has on the source ptitket to be forwarded, which, in
turn, depends on the observed behavior history, not onljhemtitcomes of the random pairing
games. And third, an important strategy criterion for a nisdew useful has been the network
in relying its own packets to the intended destinations,ciliietter models the motivation for
cooperation.

In (Wang et al., 2010), the authors propose a non-coopergtme based on a repeated
forwarding game. They also define a strategy space with figsiple strategies: defection, co-
operation, tit-for-tat, anti-tit-for-tat and random. hdivide the time in series of discrete slots,
and they propose a system with a single memory position ichvtiie strategy can be changed
at each slot according to the fitness of the previous sloty @le® propose a punishment mecha-
nism, in which cooperating nodes change their forwardiragagy to a more restrictive one when
they notice that their neighbors are doing the same thingy @ingue that this kind of punishment
mechanism can make other nodes around the selfish node &adedheir forwarding strategies
and in this way achieve a global punishment. Compared withesults, they only show results
for a network with a single selfish node that suddenly reditsedsrwarding behavior and they
do not consider the impact of selfishness in the performahceaperative nodes.

In (Ji et al., 2010) the authors present an interesting raperative game theoretic frame-
work. The main contribution of this work is that it considersisy and imperfect observation.
To tackle this problem, the authors propose to use a belgésyusing the Bayes’ rule to as-
sign and update a belief (trust) in other nodes. In partictités belief measure is related to the
probability that a certain node will follow a certain cooaton strategy. The authors develop a
model for the interaction of two nodes and then they try toegalize this model to a multi-node
scenario. As the authors state, a direct design of theiesyfir the multi-node case isfiicult.
For this reason, the two-player scenario is used as baseitha strategy called BMPF (Belief-
based multi-hop packet forwarding) is used to try to imprthe end-to-end performance. To
properly apply the BMPF strategy, the sender needs an upbatef value for each node on the
possible route, which means that a lot of interaction betweles are needed to take advantage
of the BMPF strategy. On the other hand, their belief valimiawlates all the previous history.
Despite they use a discount factor, the accumulation of @ kastory makes quick adaptability
difficult. To this respect, notice that the behavior of a deviae sssitch to a selfish behavior
because, for example, the node is running out of battery. Whene are changes of this type, it
is very important to consider the convergence time requoeddaptation to the new conditions.
In the mentioned work, there are not results in this diregtimt their results are presented in av-
erage. Itis true that their model can partially alleviatarges of behavior by considering them
a kind of imperfect observation but their convergence speeming to be low in comparison
with ours since they keep long records of interaction histlsr our proposal, we have explicitly
analyzed this type of environmental changes and we haverstiwat in our system the nodes
quickly learn the appropriate cooperation behavior (segerults in Section 5.2).

Finally, in (Jaramillo and Srikant, 2010), the authors pres system called Darwin which is
also based on a non-cooperative game. The strategy propoBealwin considers a retaliation
situation after a node has been falsely perceived as seliitie. system assumes that nodes
share their perceived dropping probability with each othEris assumption is made in order
to facilitate the theoretical analysis by isolating a pdinodes, but in a real implementation, a
mechanism is required to guarantee that even if a node liegeputation scheme still works.
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Authors state that the study of this problem in the contexwioéless networks is not solved,
and that they just propose a simple mechanism which reliesttoer cooperative nodes to tell
the actual perceived dropping probability of a node to mimérthe impact of liars. On the
contrary, in our proposal, nodes do not share trust valueslebljust exchange their strategies
and their associated fithess. The strategies do not comtegifis data of particular nodes and a
strategy is used several times only if it provides a good $inevhich can be directly measured
by each node. Regarding performance results, the authd@sarefin do not show adaptability
measures, but they mention that their system needs to dhferaa long time in order to estimate
the discarding probability of neighbor nodes. Simulatioh®arwin show that the nodes that
implement it éfectively obtain more cooperation than those that not implerarwin. Authors
define non-Darwin nodes as those that apply random discahdseime probability. Although
their results are not directly comparable with ours, it igefasting to notice that unlike our
system, even when the non-Darwin nodes discard with protyadme (which is the definition of
selfish nodes in our work), they still receive a considerabligperation from the network (around
70%).

6. Conclusions

In this article we have shown that it is possible to use digted algorithms for the genetic
evolution of strategies in a game theoretic trust model f&\NETs. We have proposed a trust
model in which genetic information is exchanged among regmodes, much like plasmid
migration in bacterial colonies. This way we introduce loamanmunication overhead, while
disseminate good strategies throughout the network by snefameighborhood overlapping and
mobility. Our proposal does not need a central entity and aaé require unrealistically large
number of node interactions to evaluate the fitness. Insittdds, each node adapts its strategy
to the dynamical characteristics of the network, trying taximize its payff in terms of packet
delivery and resource saving. As an emerging feature ofitleel optimization procedure, the
whole network was able to maximize the cooperation and saeegg by dfering the forward-
ing service only to those nodes that were willing to coopeweith the network, and isolating
those free-rider nodes that wanted to utilize the resousEdise network without cooperating
with it. Our distributed model not only achieved these oties hundreds of times faster than
the centralized model, but also obtained better cooperaatues, very close to those predicted
by a theoretical upper bound. Thanks to these features bédasergence to optimal coopera-
tion values and selfish node isolation, the algorithm alsoatestrated a remarkable adaptation
capacity to dynamic environmental changes.
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