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Abstract

Cooperation among nodes is fundamental for the operation ofmobile ad hoc networks (MANETs).
In such networks, there could be selfish nodes that use resources from other nodes to send their
packets but that do not offer their resources to forward packets for other nodes. Thus,a coop-
eration enforcement mechanism is necessary. Trust models have been proposed as mechanisms
to incentive cooperation in MANETs and some of them are basedon game theory concepts.
Among game theoretic trust models, those that make nodes’ strategies evolve genetically have
shown promising results for cooperation improvement. However, current approaches propose
a highly centralized genetic evolution which render them unfeasible for practical purposes in
MANETs. In this article, we propose a trust model based on a non-cooperative game that uses a
bacterial-like algorithm to let the nodes quickly learn theappropriate cooperation behavior. Our
model is completely distributed, achieves optimal cooperation values in a small fraction of time
compared with centralized algorithms, and adapts effectively to environmental changes.

Keywords: MANET, trust models, game theory, evolutionary algorithm

1. Introduction

Mobile Ad Hoc NETworks (MANETs) are infrastructureless networks formed by wireless
mobile devices with limited resources. Source/destination pairs that are not within transmission
range of each other must use intermediate nodes as relays (Perkins, 2001). The cooperation
among nodes is fundamental for the operation of MANETs, since nodes that contribute with
their own limited resources, such as battery, memory and processing capacity, should be able to
use the resources contributed by other nodes. However, in this environment, there could be free-
riders or selfish nodes, i.e., users that want to maximize their own welfare by using resources
from the network to send their own packets without forwarding packets on behalf of others
(Wrona and M̈aḧonen, 2004). Thus, it is important to encourage nodes to participate in essential
network functions such as packet routing and forwarding, because the higher the cooperation
the better the network performance. In this sense, several trust mod els have been proposed as
mechanisms to incentive node participation within the network (Mejia et al., 2009b). A trust
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model is a conceptual abstraction to build mechanisms for assigning, updating and using trust
levels among the entities of a distributed system. In other words, the trust model allows the
establishment of trust relationships among different entities with some degree of credibility, for
a given action (Marti and Garcia-Molina, 2006).

Among proposals in the literature, trust models based on game theory are interesting because
they properly model the dilemma that a node has: to cooperateand gain trust, or not to cooperate
and save battery. To face this dilemma, several pure and mixed strategies has been studied in
game theory, especially different forms of tit for tat (Osborne, 2004). However, in a MANET,
game conditions can change over time, for which we focus on trust models that use genetic
algorithms to evolve the strategies. These models are promising in MANET because they can
dynamically adapt to the current network conditions.

In this article, we propose a trust model based on (1) a game, (2) a trust evaluation mecha-
nism, (3) a way of coding the cooperation strategy and (4) a genetic algorithm that allows a node
to evolve its cooperation strategy. The proposed evolutionalgorithm1 introduces a low overhead
because it is completely distributed and easy to compute. Indeed, it only requires local exchanges
among neighbors. Our algorithm works much like plasmid migration in bacterial colonies (Dale
and Park, 2004; Marshall and Roadknight, 2000) combined with a parallel cellular genetic algo-
rithm (Alba and Dorronsoro, 2008 ; Alba and Troya, 1999; Cantupaz, 1998; Nowostawski and
Poli,1999). Through this procedure, individual nodes select the strategies that locally maximizes
their payoff in terms of both packet delivery and resource saving. The general idea is that, within
the network, there are some nodes that are willing to cooperate if deemed worthy, called normal
nodes. There are also some nodes that are expecting to use theresources of normal nodes without
contributing to the network, called selfish nodes. The network environment is characterized by
the fraction of selfish nodes within the total population of nodes in the network. For a given envi-
ronment, we measure the cooperation as the fraction of packets originated by normal nodes that
effectively reach their destinations. We measure the resourcesavings in terms of the detection
and isolation of selfish nodes, since serving selfish nodes constitutes a waste of resources. Al-
though these are global variables, the local payoff maximization is such that the whole network
increases the cooperation and, consequently, the throughput, without wasting scarce energy re-
sources on selfish nodes. Indeed, our trust model efficiently achieves both high adaptability to
environment changes and quick convergence to almost optimal cooperation and energy saving
values, as we show by simulation.

It is important to mention that we are concerned only with selfish nodes, not malicious nodes.
Selfish nodes are free-riders that want to consume other nodes resources without supporting the
network with their own resources, but they are not interested in undermining network security or
causing any damage.

The rest of the article is organized as follows. Section 2 briefly reviews models for cooper-
ation and genetic algorithms to put our work in context. Section 3 describes our game theoretic
trust model. Section 4 presents the simulation scenarios and their parameters. Section 5 shows
the performance evaluation for our trust model and comparesit with the previously published
results of a centralized evolution model. Section 6 concludes the article.

1A preliminary version of the algorithm was presented in a conference paper (Mejia et al.,2009a).
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2. Background

In this section we briefly review cooperation models and genetic algorithms, to put in context
our algorithm which uses a non-cooperative game trust modeland an hybrid cellular/bacterial
evolution mechanism.

2.1. Models for Cooperation

Models for cooperation enforcement in MANETs can be broadlydivided in two categories
according to the techniques they use to enforce cooperation(Marias et al., 2006): credit-based
models and trust models. The former category is based on economic incentives, whereas the later
is based on building reputation to enforce cooperation.

In credit-based models, the network tasks are treated as services that can be valued and
charged. These models incorporate a form of virtual currency to regulate the dealings among
nodes. The most widely-cited proposal of this type was introduced by Buttyan and Hubaux
(Buttyán and Hubaux, 2000). These authors introduce a currency called nuglets. The exchange
of nuglets relies on a tamper-resistant security subsystembeing present in every node. Another
credit-based proposal called Sprite (Yale and Zhong, 2002)makes use of a public key infras-
tructure to deal with the problem of selfishness. Nodes upload receipts to a Credit Clearance
Service (CCS), a central authority which is available when the nodes are connected to the In-
ternet. Express (Janzadeh et al., 2009) is a work based on Sprite. Express tries to minimize
the cost of digital signatures by using hash chains. Expressalso uses an external trust entity
called Reliable Clearance Center (RCC). In general, the main drawback of credit-based models
is that they require the existence of either tamper-resistant hardware or a virtual bank, heavily
restricting their usability for MANETs. An hybrid scheme called OCEAN (Bansal and Baker,
2003) uses both reputation to detect and punish selfish behavior, and a micro-payment compo-
nent to encourage cooperation. The credit is earned for eachimmediate neighbor and it cannot
be used to send packets in a different route. A reputation scheme optimized for video streaming
inspired in OCEAN has been presented in (Mu et al., 2010). Another model called ad hoc-VCG
(Anderegg and Eidenbenz, 2003) is also a credit-based modelwhich introduces a second-best
sealed type of auction. To this respect, a pricing question arises concerning the amount of the
payment a node should ask to forward packets. Intermediate nodes declare their respective prices
honestly. Honest behavior is assured by VCG mechanism sincead hoc-VCG is robust when only
one cheating node exists. However, it might fail in the presence of collusions of nodes trying to
maximize their payments. An additional issue is the excessive overhead because ad hoc-VCG
requires complete knowledge of the network topology duringthe route discovery phase.

On the other hand, models in which trust is the base for cooperation are envisioned as the
most promising solutions for MANETs because these models donot have the restrictions of
credit-based models. Trust models can frustrate the intentions of selfish nodes by coping with
observable misbehaviors. If a node does not behave cooperatively, the affected nodes, recipro-
cally, may deny cooperation. Generally speaking, in a trustmodel, an entity called the Subject
S commends the execution of an actiona to another entity called the AgentA, in which case we
say thatT{S : A,a} is the trust level thatS has onA with respect to the execution of actiona
(Sun et al., 2006). This trust level varies as the entities interact with each other; i.e., if the Agent
A responds satisfactorily to the SubjectS, S can increase the trust levelT{S : A; a}. On the other
hand, if the subjectS is disappointed by the agentA, the corresponding trust level could be de-
creased by some amount. In this sense, a trust model helps thesubject of a distributed system to
select the most reliable agent among several agents offering a service (Marti and Garcia-Molina,
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2006). To make this selection, the trust model should provide the mechanisms needed for each
entity to measure, assign, update and use trust values. Several trust models have been proposed
in the literature for improving the performance of MANETs. In (Mejia et al., 2009b), there is
classification of trust-based systems based on the theoretical mechanisms used for trust scoring
and trust ranking. Following this classification, we can further divide the trust-based proposals
in approaches based on social networks, information theory, graph theory and game theory.

In proposals based on social networks, nodes build their view of the trust or reputation not
only taking into account their own observation but also considering the recommendations from
others. One of the first examples of a trust system based on social networks is CONFIDANT
(Buchegger and Le Boudec, 2002). CONFIDANT works as an extension of a reactive source-
routing protocol for MANET. Nodes monitor the next node on the route by either listening to the
transmission of the next node or by observing route protocolbehavior. Any misbehaving action
generates ALARMs. Each node maintains received ALARMs fromfriend nodes and ALARMs
produced by the node itself. In the improved CONFIDANT (Buchegger and Boudec, 2004),
authors provided a modified Bayesian approach for reputation representation, updates, and view
integration. When updating the reputation according to recommendations, only information that
is compatible with the current reputation rating is accepted. This approach is objective and ro-
bust, but it still leaves an opportunity for elaborate attackers to launch false accusation attacks (Li
and Wu, 2010). In (Michiardi and Molva, 2002), authors propose CORE. CORE relies on obser-
vations and recommendations which are combined by a specialized function. The CORE scheme
is immune to some attacks because no negative ratings are spread, and, thus, it is impossible for
a node to maliciously decrease another nodes reputation. However, two or more nodes may col-
lude (i.e., send positive rating messages) in order to increase their reputation. To prevent such
phenomena, the CORE implicitly provides some protection, since subjective reputation has more
impact (i.e., weight) than the indirect. Finally, SORI (Bansal and Baker, 2003) is another trust
model that also uses reputation spreading. In addition to the previous ones, there are some trust
models that are based on social networks and that they also use cluster-heads. The cluster-head is
a node who is elected to play a special role regarding the management of recommendations. An
example can be found in (Safa et al., 2010). In this proposal,the protocol organizes the network
into one-hop disjoint clusters then elects the most qualified and trustworthy nodes to play the role
of cluster-heads. The proposed mechanism continuously ensures the trustworthiness of cluster-
heads by replacing them as soon as they become malicious. As aconcluding remark for trust
models based on social networks, we would like to notice thatthe calculation and measurement
of trust in unsupervised ad-hoc networks involves a very complex aspect like rating the honesty
of recommendations provided by other nodes. Although thereare efforts like (Luo et al., 2009),
(Li and Wu, 2010) and (Zouridaki et al., 2009) that try to alleviate this problem, it is still a hard
problem for systems that use recommendations. Furthermore, social trust models that also use
clusters add another problem, they require a dealer, which must be involved in the working of
other nodes, and this is hard to achieve in practical ad hoc networks.

Regarding the proposals based on information theory, one ofthese is (Sun et al., 2006), in
which the authors proposed a trust model to obtain a quantitative measurement of trust and its
propagation through the MANET. However, the proposal is theoretical and it does not include
an implementation specification. (Sherwood et al., 2006) describes a trust inference algorithm in
terms of a directed and weighted Trust Graph,T, whose vertices correspond to the users in the
system and for which an edge from vertexi to vertex j represents the trust that nodei has in node
j. However, covering the whole graph is still a high complexity computational problem.

Finally, there are several proposals that use game theory. These proposals can be further
4



divided into cooperative and non-cooperative games (Osborne, 2004). In cooperative games,
users form coalitions so that a group of players can adopt a certain strategy to obtain a higher gain
than the one it may be obtained making decisions individually. In cooperative games, the nodes
need to communicate with each other and discuss the strategies before they play the game. (Baras
and Jiang, 2005) and (Saad et al., 2009) are representative proposals of cooperative games for
MANET. Nevertheless, this type of games have the disadvantage of generating network overhead
due to the complex processes of coalition management. On theother hand, non-cooperative
games are especially suitable in scenarios in which playersmight have conflicting interests, and
each of them wants to maximize her own profit taking individual decisions (Felegyhazi et al.,
2006). Our proposal and many others that can be found in the literature (Seredynski and Bouvry,
2009),(Seredynski et al., 2007),(Milan et al., 2006),(Komathy and Narayanasamy, 2008), (Wang
et al., 2010),(Ji et al., 2010), (Jaramillo and Srikant, 2010) are based on a variation of the classical
non-cooperative game of the iterated prisoner’s dilemma game, in which nodes can use different
strategies. A further discussion of these proposals and a comparison with ours is provided in
Section 5.3. It is worth to mention that, in general, all the mentioned models improve cooperation
results, but they still have some difficulties to be applied in MANET.

In this article, we focus on trust models based on game theory, since they capture very well
each node dilemma about deciding whether to cooperate and obtain the trust of peer nodes, or not
to cooperate and save scarce energy resources. In particular, we focus on non-cooperative games
since nodes rely only on private histories and thus, the costly coalition overhead and possible
conflicting interests can be avoided. More specifically, trust models that use genetic algorithms
for the evolution of strategies show promising results in MANET because they can adapt dynam-
ically the behavior of nodes to the current conditions of thenetwork. In particular, we take as
reference model the centralized one presented in (Seredynski et al., 2007). This model is interest-
ing because the evolution algorithm achieves promising results regarding cooperation and energy
saving. However, we are still concerned about the highly centralized nature and the slow conver-
gence of its evolution algorithm. Optimal strategies are obtained by using a centralized entity that
runs a conventional genetic algorithm in an off-line way after a large number of interactions be-
tween nodes. For these reasons, in this article we propose a non-cooperative game theoretic trust
model in which strategies evolve on-line according to a distributed genetic algorithm without
requiring too much data exchange among nodes. Our model exploits the distributed nature of a
MANET by using a local genetic information exchange. Our algorithm works much like plasmid
migration in bacterial colonies (Dale and Park, 2004; Marshall and Roadknight, 2000) combined
with a parallel cellular genetic algorithm (Alba and Dorronsoro, 2008; Alba and Troya, 1999;
Cantupaz, 1998; Nowostawski and Poli, 1999). Through this procedure, individual nodes select
the strategies that locally maximizes their payoff in terms of both packet delivery and resource
saving. A brief summary about Genetic algorithms is introduced in the rest of this section to
better understand the proposal.

2.2. Genetic algorithms
In many complex optimization problems, an exhaustive search of the solution space is unfea-

sible. Genetic algorithms (GAs) are heuristic approaches that are based on the genetic hereditary
processes of biological organisms. A canonical GA works with a population of individuals,
where each individual represents a possible solution to a given problem. A fitness score for each
individual is assigned according to how it fits as a solution to the problem. The higher the fitness
an individual has, the higher the opportunity it has to be selected for reproduction. This repro-
duction is done by crossing two individuals of the population over, generating new individuals
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as offspring that contain the best characteristics of the previous generation. As generations come
and go, these best characteristics are spread throughout the entire population. By favoring the
mating between the fittest individuals, it is possible to explore the most promising regions of the
solution space.(Holland, 1975; Whitley, 1993)

Generally, a GA performs four steps to obtain a new population: initialization, evaluation,
selection and reproduction. The process is recursively repeated from the second step during a
given number of generations or until the solution converges.(Holland, 1975)

I. Initialization. In a GA, a genetic code, or chromosome, represents any solution to the
problem. The first population of chromosomes is typically randomly generated.

II. Evaluation. The mechanism used to measure the individual fitness to solve the given prob-
lem is called fitness function.

III. Selection.The selection algorithm picks individuals out among the current population to
participate in the next generation. The most common approach is a roulette-wheel selection,
where a selection probability is assigned to each individual chromosome, proportionally to
its fitness.

IV. Reproduction. This is the process by which two parent chromosomes are recombined,
normally through the genetic operators of crossover and mutation. Crossover is a sexual
reproduction between two parents, where some portions of the parents chromosomes are
swapped to form a child. Then, the mutation operator alters each child gene with a small
probability in order to ensure that no point in the search space has a zero probability of
being examined.

2.2.1. Parallel Genetic Algorithms
Parallel genetic algorithms (PGA) are not only an extensionof canonic GA, but also a dif-

ferent efficient way to search the space of solutions for a given problem(Nowostawski and Poli,
1999). In a PGA, the population is divided into subpopulations and an independent GA is per-
formed on each of these subpopulations. The local selectionand reproduction rules allow the
species to evolve locally, and diversity is enhanced by migration, i.e., by transferring genetic in-
formation among subpopulations. The processes of genetic evolution and migration are repeated
until the solution converges.

The many parallel genetic algorithm models that can be foundin the literature can be clas-
sified in island or cellular depending on their parallelism grade (Alba and Troya, 1999). In an
island PGA (iPGA), the whole population is divided into a fewseparated subpopulations, or is-
lands, with many individuals on it, and an independent genetic algorithm is performed in each
island. After a certain number of generations, there is a migration process by which the fittest
individuals migrate among islands in order to obtain genetic diversity (Nowostawski and Poli,
1999). In a cellular PGA (cPGA), the population is divided into a large number of subpopula-
tions with a few individuals on it, and the genetic information exchange among subpopulations
is performed by overlapping subpopulations (Alba and Troya, 1999). The population in a cPGA
has a spatial structure that limits the interactions among individuals to just some small neigh-
borhoods. However, by neighborhood overlapping, optimal local solutions can spread across the
entire population (Nowostawski and Poli, 1999).

2.2.2. Plasmid Migration and Bacterial Genetic Algorithms
There are several genetic algorithms based on observed bacterial behavior. Different authors

present them as microbial genetic algorithms (Harvey, 1996), bacterial algorithms (Cabrita et al.,
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2003), pseudobacterial genetic algorithms (Nawa et al., 1999), lateral gene transfer (Ochman
et al., 2000) and plasmid migration (Marshall and Roadknight, 2000) among others. In general,
these algorithms avoid the sexual reproduction, so they arenot classified as parallel genetic
algorithms, although they are extremely distributed. Herewe describe two of these algorithms,
those on which we based part of our evolution process.

Plasmid Migration (PM) is based on the behavior of some bacteria (Marshall and Roadknight,
2000). Plasmids are self-replicating extrachromosomal DNA molecules that are not essential for
the survival of the bacterium but encode a wide variety of genetic strains that permit a better
survival in adverse environments. Plasmid has the ability to be transferred among bacteria within
the same generation by allowing healthy individuals to deposit plasmids in the medium, so that
less healthy individuals can take these plasmids from the medium. This ability gives bacteria a
great adaptability to sudden environmental changes (Dale and Park, 2004). This analogy can be
used in genetic algorithms to spread high quality strands from fitted individuals to the rest of the
population through the gene transfer operation.

On the other hand, in a bacterial algorithm, a chromosome is divided in p parts, and each
individual producesm− 1 clones of itself. The randomly chosenith part of them− 1 clones is
mutated and the best fitted part is replicated in them individuals. After this mutation-evaluation-
selection-replacement process is repeated for all thep parts, the fittest individual goes to the next
population and the otherm− 1 individuals die (Nawa et al., 1999; Cabrita et al., 2003).

Both plasmid migration and bacterial algorithms are greedyalgorithms that, at each step,
make apparent good decisions without regarding for future consequences and, as such, can lead
only to locally optimal solutions. In contrast, these solutions can be obtained very quickly,
enhancing adaptability at the cost of optimality (Weiss, 1998). However, in many occasions,
in a well designed plasmid migration algorithm, the mobility of the individuals allows good
plasmid to spread all over the population, so that better solutions can be obtained through a
more exhaustive search of the solution space. In this article, we propose an enhanced cPGA
algorithm that includes some greedy bacterial heuristics to achieve fast convergence, optimality
and adaptability.

3. A Model for On-Line Distributed Evolution of Cooperation

In this section we describe our proposal, where both the trust evaluation mechanism and the
strategy evolution algorithm are designed to enhance the convergence speed and adaptability.
Furthermore, both trust evaluation and strategy evolutionare carried out in a distributed way
among the nodes of the network. In our trust model, the interactions among nodes are based on
the iterated prisoner’s dilemma under the random pairing game (Ishibuchi and Namikawa, 2005).
Each intermediate node utilizes a strategy that defines whether it should retransmit or discard a
packet that comes from a certain source node. The strategy depends on two aspects: the past
behavior of the network when the intermediate node acted as asource, and the trust level that
the intermediate node has in the source node. The model is comprised of: (a) a trust evaluation
mechanism; (b) a game based network model; (c) a strategy; and (d) a local genetic algorithm
based on plasmid migration to evolve the strategy in a highlydistributed way.

We take as reference the centralized model of (Seredynski etal., 2007). Essentially, the
similarities between the centralized model and ours are in the game model and in the strategy
encoding. These similarities are kept to make the performance comparison easier (see evaluation
results in section 5). However, both the trust evaluation mechanism (for better adaptability)
and the genetic evolution (for easy distributed computation) are totally different. On the other
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hand, the more close related work is the BNS proposal (Komathy and Narayanasamy, 2008),
which also uses a non-cooperative game model with a distributed evolution. In BNS, a node
decides the strategy to follow by changing to other player’sstrategy if it seems to be doing better.
Despite the distributed nature of this evolution strategy,the payoff structure strictly encourages
cooperating strategies without taking into account the energy savings of discarding strategies.
A more detailed comparison with BNS and with other proposalsthat also use non-cooperative
game models is provided in Section 5.3.

3.1. Trust evaluation mechanism

Each node maintains a trust table based on the observed behavior of its neighbors. For ex-
ample, if nodeB is observing nodeA, which is within its transmission range, it can know the
number of packets that has been sent toA to be forwarded,n, and the number of packets thatA
has actually forwardednA. SoB can compute the forwarding rate ofA, as show in Eq.(1)

fr (B,A; n) =
nA

n
(1)

We can use a simple cumulative average to compute the forwarding rate. For instance,B can
update the forwarding rate ofA by observing whether thenth packet has been forwarded byA or
not. This is done by applying Eq.(2):

fr (B,A; n) =
1
n

n
∑

i=1

di =
(n− 1) fr (B,A; n− 1)+ dn

n
(2)

wheredi ∈ {0,1} is theith observed decision.
Since the strategies are modified continuously by the nodes to adapt to environmental changes,

it would be unfair to have a long record of observed decisionsif they were taken under a previous
strategy, different to the current one. Correspondingly, we decided to take into account only the
most recentm observed decisions, so we compute the forwarding rate as themoving average of
the decision sequence, i.e., the fraction of retransmittedpackets among the previousm packets
received for forwarding.

The value of the memory depth,m, obeys a trade-off: we would likem to be large enough
to obtain a fair evaluation of the forwarding rate, but we would also likem to be small enough
to ensure that the forwarding rate actually corresponds to the current strategies (tuning ofm is
discussed in Section 4). Computing the forwarding rate witha finite memory of depthm, requires
both the previous forwarding rate and the lastmdecisions as state variables, as we show in Eq.(3):

f̂r (B,A; n) =



































1
n

∑n
i=1 di =

(n−1) f̂r (B,A;n−1)+dn

n n ≤ m

1
m

∑m−1
i=0 dn−i =

mf̂r (B,A;n−1)+dn−dn−m

m n > m

(3)

With the current ratêfr (B,A; n), Bcan determine the trust level it should have inA, T {B : A; n},
as shown in Table 1. For comparison purposes, we keep the sameranges on the fraction of for-
warded packets and the same corresponding trust values as inthe centralized model.

Finally, it is worth to mention that using a moving average that only takes into account the
previousmobserved decisions may seem a subtle detail, but we introduce it because it is critical
for the on-line adaptability of the strategies, as we will show in Section 5.
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Table 1: Relation between delivery rate and trust level

f̂r (B,A; n) T {B : A; n}

0.9− 1 3

0.6− 0.9 2

0.3− 0.6 1

0− 0.3 0

3.2. Game-based network model

Each intermediate node that receives a packet should decidewhether to forward it or to dis-
card it, according to its strategy. Each game starts with thetransmission of a new packet from a
source node and ends either when the packet is delivered to its destination, or when an interme-
diate node decides to discard the packet. Once the game has finished, each participant receives a
payoff according to the decision it took and its trust level on the source node. Since there are two
types of nodes, source nodes and intermediate nodes, two types of payoff tables are maintained,
as shown in Table 2 (Seredynski et al., 2007). These payoffs have been directly taken from the
centralized model for comparison purposes and also becausethey have two good properties: a
successful transmission is the most rewarding event, and there is symmetry between the discard-
ing and forwarding payoffs with respect to the trust value, indicating that saving energy is as
important for each n ode as obtaining the trust of its neighbors.

Table 2: Tables of payoff

Source Node Payoffs

Transmission Status

Successful 5

Failed 0

Intermediate Node Payoffs

Trust Level of the Source Node

T = 3 T = 2 T = 1 T = 0

Cooperate 3 2 1 0.5

Discard 0.5 1 2 3

The forwarding or discarding decision of an intermediate node is observed by all nodes pre-
ceding it in the path. In addition, a node that receives a packet can consider that all its preceding
nodes have cooperated.

3.3. The strategy

We use a strategy codification similar to the one used in the centralized model. The strategy
that a node follows when it is acting as intermediate node is encoded by a string of bits, in which
each bit represents the decision of discarding (D) (bit = 0) or cooperating (C) (bit = 1). The
strategy depends on the following parameters:

• The trust level that the node has in the source node.

• The transmission status of the two previous games that the node has played as source,
which could be success (S) or failure (F).
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The resulting strategy has 16 bits, as shown in the example strategy of Table 3. For instance,
according to the strategy of Table 3, an intermediate node will forward a packet if it has a trust
level of 1 in the packet’s source and if its two previous packet transmissions as source were
successful (8th bit of the strategy, from left to right).

The strategy is evolved by means of a genetic algorithm. A possibility is to randomly choose
an initial strategy and then start evolving it. However, theconvergence speed to optimal cooper-
ation can be improved if some bits of the initial strategy areset to particular values. In addition,
nodes cooperate if they have not played two times as source yet (we discuss these issues in
Section 3.4).

Table 3: Strategy coding, example strategy 0001 0011 0101 0111

Source Trust Level 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

Transmission Status −2 F F S S F F S S F F S S F F S S

Transmission Status −1 F S F S F S F S F S F S F S F S

Current Decision D D D C D D C C D C D C D C C C

3.4. Distributed Bacterial-like Evolution Algorithm

A genetic algorithm is used to maximize the fitness or mean payoff of each node. The de-
sign of the evolution algorithm took us several iteration steps where we probed different design
options to balance the different issues of the learning process. As a result, next we present our
evolution algorithm and discuss its design. Furthermore, in Section 5, it is shown that our pro-
posal clearly outperforms the centralized algorithm in terms of cooperation, convergence speed,
energy saving and adaptability.

In our distributed bacterial-like algorithm, we evolve thestrategies on-line during the life of
the network. A successive sequence of games takes place during this network life. A game is a
successful or failed packet transmission. In a game, a source node selects the most trustedh-hop
route amongr possible routes and sends its packet through it. The game is successful if the
transmitted packet is received at the destination. When a node has playedR times as the packet
source, we said that it has completed a Plasmid Migration Period (PMP). At this moment, an
evolution step must take place, i.e., the node exchanges genetic information with its neighbors
and evolves its strategy.

We combine the plasmid migration concept with a classical cellular genetic algorithm by al-
lowing each node to receive the genetic information from allits one-hop neighbors in order to
start a reproductive mechanism to construct a new strategy.For reproduction we use the classical
one-point crossover and mutation processes. The bacterialplasmid migration is introduced by
allowing each node to keep its best previous strategy so that, if during the current plasmid migra-
tion period the new strategy did not increase the fitness, theold strategy can be restored. More
specifically our model works as shown in Algorithm 1.

At time 0, nodei starts with an initial random strategy,si(0), whose fitness,fi(0), is evaluated
during the first PMP, i.e., during the transmission of its ownfirst Rpackets (5th line of Algorithm
1). Like plasmid genes, nodei keeps a record of the best proven strategy so far, i.e., if at the jth

PMP the current strategysi( j) is worst than the previous one,si( j−1), nodei restores its previous
strategy and fitness(7th and 8th lines of Algorithm 1). Nodei exchanges its strategysi( j) and its
corresponding fitnessfi( j) with its one-hop neighbors,K , and selects a pair of potential parents,
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Algorithm 1: Bacterial-like evolution pseudo-code

// Node i goes on from the 0th PMP

inputs: At each PMP, the set ofi’s current neighbors,K
outputs: The sequence of strategiessi( j) and fitnessesfi( j) at the j th PMP, for j = 0, 1,2, ...
begin1

si(0)← GenerateStrategy() ; // Generate the initial strategy2

j ← 0 ; // Time index, expressed in PMPs3

while true do4

fi( j)← GetFitness(si( j)); // Evaluate this strategy (play some games)5

if ( j > 0) && ( fi( j) < fi( j − 1)) then // The previous strategy was better6

si( j)← si( j − 1) ; // Restore the previous strategy7

fi( j)← fi( j − 1) ; // and the previous fitness8

end9

K ← GetNeighborhood(i) ;10

p1 ← RouletteWheel(K ∪ {i}) ; // Get first parent11

p2 ← RouletteWheel(K ∪ {i}) ; // Get second parent12

while p1 == p2 do13

p2 ← RouletteWheel(K ∪ {i}) ; // We need two different parents14

end15

if fi( j) ≥ Mean( fp1( j), fp2( j)) then16

si( j + 1)← si( j) ; // Changing the strategy is not worthy17

else18

si( j + 1)← Crossover(sp1( j),sp2( j)) ;19

si( j + 1)← Mutation(si( j + 1)) ;20

end21

j++;22

end23

end24

p1 and p2, one of which can be nodei itself (lines 10th to 15th of Algorithm 1). This selection
is performed through a roulette wheel process. In a roulettewheel, a selection probability is
assigned to each individual strategy aspk = fk/

∑

n∈K fn, k ∈ K , and each parent is randomly
selected according to this distribution. If the mean fitnessof the selected potential parents is
worse than the fitness of the current strategy (16th and 17th lines of Algorithm 1), nodei keeps
its current strategy for the next PMP. Otherwise, the selected parent strategies are combined to
construct a child strategysi( j + 1). In this last case, the function performs a one point crossover
where half of the genes are taken from one parent and the otherhalf are taken from the other
parent. Finally, the child strategy goes through a mutationprocess, where each bit is flipped with
a given probability. The resultant strategy is the one that will be used in the next PMP. This
process is repeated during the life time of the network.

Regarding the initial random strategy, corresponding to the functionGenerateStrategy()
in the 2nd line of Algorithm 1, we make some a priori decisions about some bits in order to speed
up the convergence of the algorithm, as shown in Algorithm 2.In particular, we fix six bits of that
initial strategy: an intermediate node cooperates when thesource node has the highest trust value
and the network has delivered at least one of its previous twopackets (i.e., according to Table 3,
bits 14, 15 and 16 are set to Cooperate -7th line of Algorithm 2). Similarly, an intermediate node
discards a packet when the source node has the lowest trust value and the network has failed in
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delivering at least one of its two previous packets (i.e., bits 1, 2 and 3 are set to Discard -8th line
of Algorithm 2). We have validated these asumptions by simulation since this pattern was found
in th e final strategies after convergence under very different simulation scenarios. Finally, the
ten remaining bits of the initial strategy are randomly chosen as 0 or 1 with probability 1/2 (lines
3 to 6 of Algorithm 2).

Algorithm 2: Pseudo-code for randomly generating a new strategy

GenerateStrategy {1

s← null ; // strategy to be returned2

for (bit = 4;bit < 14;bit + +) do3

r ← Random() ; // 0 or 1, each with probability 1/24

SetStrategyBit(s,bit, r) ; // Set the given bit of s randomly5

end6

s← OR(s,0000000000000111) ;// conditions for initial collaboration7

s← AND(s,0001111111111111) ;// conditions for initial discarding8

return s ;9

}10

An important issue to address is how a node should behave at the beginning of network op-
eration, when it has tried to send less than two packets as source node, so no information is
available about network behavior. In this case, we decided that the node should try to immedi-
ately start building a good reputation among neighbors, as it is suggested in (Axelrod and Dion,
1988). Therefore, when the node has transmitted less than two packets, the decision made as
intermediate node is always cooperate, regardless of the trust level it has on the current source
node. The last issue we have to consider is how to manage the reputation of unknown nodes. In
this case, the initial reputation level assigned isOne.

The steps followed to design our algorithm are briefly summarized next. First, we tried a
greedy plasmid migration algorithm in which each node exchanges its strategy with the first
neighbor it founds and, if the neighbor’s fitness is higher, replaces its own strategy with the
acquired one. By simulation, we found that this simple plasmid migration algorithm quickly im-
proved cooperation but the solution achieved was not very close to optimal cooperation. Next, we
tried a chromosomal cellular algorithm, in which a standardgenetic algorithm was run among
neighbors. The genetic information was exchanged among one-hop neighbors and each node
performed a roulette-wheel selection, a crossover and a mutation process with the received strate-
gies. This approach yielded strategies that reached highercooperation ratios than greedy plasmid
migration. However, there were two problems: firstly, convergence to the maximum cooperation
was slow, and secondly, sometimes cooperation suddenly decayed because nodes were quite
disposed to change their strategies (i.e. they did not keep good strategies for too much time).

As a conclusion of the previous discussion, we devise an hybrid algorithm that mixes the
previous ones. Our algorithm uses chromosomal crossover and mutation, and also allows for
plasmid attributes such as the restoration of previous strategies or the possibility for a child to
refuse the genetic material of its parents. This design of the evolution algorithm allowed us to find
a good trade-off between the bias error (where the strategies are not close enough to optimal) and
the variance error (where the strategies vary even to the point of forgetting good solutions). This
process was particularly challenging because, in our problem, we have a double criterion: we
need to get both a good cooperation level among normal nodes (to maximize the throughput) and
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an effective isolation of selfish nodes (to minimize energy consumption). Indeed, many design
options led to truly optimal cooperation values, although the selfish nodes were not completely
isolated; other design options we tested were very good in saving energy resources from selfish
nodes, but at the cost of lower cooperation among normal nodes. Algorithm 1 is the result of
such design procedure, where we weighted those criteria with the additional requirements of
fast convergence and good adaptability. Furthermore, the extended exploration of the solution
space is due to both mobility and neighborhood overlap. Thisensures the convergence to almost
optimal cooperation values.

As a result, the foremost characteristics of our evolution algorithm are its distributed imple-
mentation and its convergence speed. These features make our algorithm readily implementable
in a MANET since we exploit the natural structure of the network in two ways:

• The evolution is carried out in a distributed way through local neighborhoods.

• The genetic information is quickly disseminated all over the network after a few PMPs
since these neighborhoods highly overlap through mobility.

4. Simulation

One of the main goals of the work presented in this article is to devise a distributed algorithm
to evolve the cooperation strategy of nodes. The requirements for this algorithm are fast con-
vergence to maximum cooperation and high adaptation to changing cooperation conditions. To
test and develop our design, we could have used one of severalpowerful simulators such as ns-2
(NS2, 2009), Opnet (OPNET, 2009) or Qualnet (QUALNET, 2009), among others. All of them
are known for having appropriate libraries for wireless ad hoc networks. However, we decided
to develop a custom-made simulator in Java with a simplified network model (about mobility,
routing etc.) because we wanted to measure, in an isolated way, the cooperation achieved by
our proposal with respect to the maximum theorical cooperation. Also, a controlled design of
the network allows us to observe and analyze the effects of our design choices isolated from
the interactions of physical, multi-access, routing and transpo rt protocols. In particular, in our
simulator, the mobility model and routing protocol are represented by the random selection of
paths and neighborhoods. Finally, it is worth to mention that not only our algorithm has been
implemented but also the centralized one for comparison purposes. The simulator and its main
parameters are descrived next.

4.1. Simulator

In our simulation platform the network is composed of a population of mobile nodes divided
into two groups: the normal nodes, which are willing to cooperate if deemed worthy, and the
selfish nodes, which are free-riders that discard every packet in transit. The environment, which
is characterized by the fraction of selfish nodes among the whole population, can be programed
to change dynamically during the simulation by the conversion of some nodes from normal to
selfish and from selfish to normal. The network simulation progresses through the execution of
games, or packet transmissions, between randomly selectedpairs of source/destination nodes.
For each source/destination pair, several randomly selected paths are established. In a single
game, once a path has been chosen, the source node transmits its packet and each intermediate
node in the path decides to forward or discard the packet according to its own strategy. As men-
tioned in section 3.2, the forwarding or discarding decision of an intermediate node is observed
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by all nodes in the path up to the destination (if the packet arrived there) or to the discarding
node, if the transmission failed. The packet transmission (or game) succeeds if the packet arrives
to the destination, and it fails if some intermediate node discards the packet. After a specified
number of games, the genetic information exchange takes place among neighbor nodes to run an
evolution step. This way, we can observe the evolution of strategies according to the programmed
change of environment conditions.

The mobility is considered through two mechanisms: a randomselection of a set of neigh-
bors for each node at each plasmid migration period, and a random selection of the path at each
single game. In the first mechanism, at the moment of a plasmidmigration period, a set of six
neighbors is randomly selected for each node, and the evolution process goes on within these
neighborhoods. The neighborhood size is chosen in order to model typical cellular hexagonal
geometry with nodes in the vertices and the centers of each hexagon. In the second mecha-
nism, when a packet is to be transmitted between a source and adestination, a path length is
randomly chosen according to a probability mass functionPh. Given the path lengthh, the num-
ber of routes,r, is randomly chosen according to a conditional probabilitymass functionPr |h.
For performance evaluation and comparison purposes, thesetwo distributions are taken from
(Seredynski et al., 2007) (see Table 4). Among the discovered routes, the source node chooses
the most trusted path, which is the one with the highest product of the forwarding rates of the
participating intermediate nodes, according to the observations made by the source node.

Table 4: Probability distribution of path hops (Ph) and number of discovered paths given the length (Pr |h).

Number of hops, h

2 3 4 5 6 7 8

Ph 0.4 0.3 0.1 0.05 0.05 0.05 0.05

P1|h 0.5 0.5 0.6 0.6 0.6 0.8 0.8

P2|h 0.3 0.3 0.25 0.25 0.25 0.15 0.15

P3|h 0.2 0.2 0.15 0.15 0.15 0.05 0.05

For the evolution algorithm, the cross point is establishedat the 8th bit, which marks the
difference between the strategies for trusted and untrusted source nodes. If the crossover takes
place, each bit of the children strategy mutates with probability 0.001. All the simulation results
are presented as the average of 60 independent replicas of the given experiment.

Finally, our algorithm requires appropriate values for thenumber of observed decisions that
a node will keep in memory,m, and for the number of games that a node will play as source in
each plasmid migration period,R. In the next section, we use some simulation experiments in
order to set these parameters.

4.2. Tuning the Parameters of our Algorithm

Our proposal includes the capacity of on-line adaptation. To this effect, it is important that
the trust values among nodes reflect, as much as possible, thebehavior of their current strategies.
Therefore, taking into account all the past events (having an infinite memory) is not appropriate
for our algorithm, so we use a finite memory of depthm. This memory allows us to store the
previousm decisions as state variables for updating the fraction of observed forwarded packets.
Regarding this memory, notice that there is a trade-off: we would like a long memory to better
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evaluate the trust placed in each node, but we would like alsoa short memory in order not to
judge the nodes based on outdated behaviors. After some pilot tests, we concluded that using
the last three observed decisions leads to optimal cooperation ratios. Furthermore, the value of
m= 3 gives four possible forwarding rates (0, 1/3, 2/3 and 1), with which we can select the four
corresponding trust values of Table 1.

The second important parameter is the number of times a node plays as source in a plasmid
migration period,R. Again, a long value ofR would allow a better evaluation of the fitness of
each strategy, but at the cost of increased convergence timeand reduced adaptability. So, for the
purpose of deciding an appropriate value ofR, we computed the cooperation evolution forR =
10, 25, 100 and 300 packets, under different number of selfish nodes within the population of 100
nodes. Recall that the cooperation is measured as the fraction of packets originated in normal
nodes that effectively reach their destinations.
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Figure 1: Evolution of cooperation for different number of selfish nodes and different number of packets per node in a
plasmid migration period.

This cooperation is shown in Figure 1, where the cooperationamong normal nodes is plotted
against the average number of packets transmitted per node,in a logarithmic scale. Given a trans-
mission rate, this average number of packets transmitted per node becomes a measure of time, so
we are plotting both the convergence speed and the maximum achieved cooperation value. In all
cases, the cooperation converges to the same steady values,but the speed of convergence varies
both withR and with the fraction of selfish nodes. With no selfish nodes (Figure 1.a), a value of
Ras small as 10 produces fast convergence times (less than 200packets per node) to the optimal
cooperation value of 1, while this time increases to 250 packets, 600 packets and 4000 packets
for R = 25, 100 and 300, respectively. With 20% of selfish nodes (Figure 1.b),R = 10 seems
too small to obtain a good evaluation of the strategies. If wecompare this ca se to that obtained
by greater values ofR, we get both a longer convergence time and a reduced maximum achieved
cooperation. In this case, a value ofR of 25 packets per node seems to be the best choice but,
with greater fractions of selfish nodes, 100 packets per nodein a plasmid migration period not
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only show better convergence times but also slightly higherachieved cooperation values (Figures
1.c and 1.d). In the four environment cases, the convergencetimes were unacceptable whenR=
300 packets. So, according to previous analysis, and takinginto account that small values of
R also generate greater transmission overhead due to frequent plasmid migration processes, we
decided to use a PMP ofR= 100 packets per node.

4.3. Centralized Algorithm Implementation
As we previously mentioned, we have also implemented the centralized evolution algorithm

presented in (Seredynski et al., 2007). For comparison purposes and to better understand both
proposals, in this section we introduce a more detailed description of this approach.

In the centralized model, nodes start with a randomly generated strategy. Then, series of
tournaments are played to calculate the payoff that nodes will receive for their actions. The fitness
of each player’s strategy is evaluated as the average payoff per event. According to this fitness, a
centralized entity, which knows all current strategies andfitnesses, selects 2NN strategies through
a roulette wheel mechanism, whereNN is the number of participating normal nodes, i.e., nodes
that are willing to cooperate if they consider it advantageous. Applying a standard one point
crossover and a standard uniform bit flip mutation over these2NN strategies, the centralized entity
generates a set ofNN new strategies in order to distribute them among the normal nodes, and
the whole process is repeated during a certain number of generations. The performance results
of the centralized approach show that the strategies evolveaccording to different (but static)
environments , where an environment is characterized by a given fraction of selfish nodes, i.e.,
nodes that always decide to discard every packet in transit.Finally, to compare both approaches,
we need to consider the same network traffic. Unfortunately, the centralized model is presented
in terms of rounds and tournaments instead of transmitted packets so we need to calculate the
average number of packets per node per generation.

More specifically, a tournament in the centralized model is played among 50 nodes, ran-
domly selected from a total population of 100 nodes. Each tournament is composed of 300
rounds. A round is composed of 50 (successful or failed) packet transmissions or games, one
per participating node. Each of the nodes of the population must participate as source in at
least two tournaments per generation. Since the probability that a given node is selectedk times
in n tournaments isq(k,n) =

(

n
k

)

2−n, the probability that a given node is selected more than
once inn tournaments is 1− q(0,n) − q(1,n) = 1 − (n + 1) 2−n,n > 1. We are interested in
the probabilityF(n) that, by thenth tournament, the node that has participated in less tourna-
ments has already been selected more than once. This is equalto the probability that any of
the nodes of the population has been selected to participatein two or more of then tourna-
ments, i.e.,F(n) = [1 − (n+ 1) 2−n]100, assuming independence among nodes. Correspondingly,
the probability of requiring exactlyn tournaments in order for all the nodes to participate in
at least two tournaments isP(n) = F(n) − F(n − 1),n > 1. According to this distribution,
the mean number of tournaments is 11.562. In conclusion, in the centralized model, there are
11.56 tournaments/generation× 300rounds/tournament× 50 packets/round ÷ 100nodes=
1734 packets per generation per node, in average.

4.4. Maximum Cooperation
As we previously mention, one of the main reasons that lead usto develop a custom-made

simulator with a simplified network model (about mobility, routing etc.) is to be able to compute

2This result we obtain theoretically has also been verified during the simulations.
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the maximum theoretical cooperation,Cmax. Next, we develop a theoretical expression for the
maximum cooperation achievable under an optimal strategy with perfectly computed trust values.
For this purpose, we assume that the selfish nodes are completely identified and that, with this
information, the normal nodes cooperate among them and discard the packets of selfish nodes.
This is the ideal condition that any trust model would like toachieve, where packets will be
forwarded if they find at least one path composed exclusivelyof non-selfish nodes. In what
follows, we will use the following notation

• N is the total number of nodes in the network

• NN is the total number of normal nodes among theN nodes of the population

• Ph is the probability that a path hash hops (see Table 4).

• Pr |h is the probability of findingr routes given that the path length ish hops (see Table 4).

• B(h) is the event that there are no selfish nodes amongh randomly selected nodes.

• A is the event that a packet finds at least one route made out exclusively of normal nodes.

According to the discussion above, a packet will reach the destination through anh-hop
path if at least the firsth nodes of the path are normal nodes (the destination can be a selfish
node). Since the nodes of the path are randomly selected, theprobability of finding a consecutive
sequence ofh normal nodes is given by Eq.(4)

Pr[B(h)] =
h−1
∏

i=0

NN − i
N − i

(4)

Correspondingly, the probability of having at least one selfish node in anh-hop path is 1−
Pr[Bh]. So, the probability that each one ofr routes ofh hops has at least one selfish node is
(1 − Pr[Bh])r and, consequently, the probability that at least one of ther routes is composed
exclusively of normal nodes is 1− (1 − Pr[Bh])r . Since the probability of findingr routes of
h hops isPh · Pr |h, the probability that a packet finds at least one path composed exclusively of
non-selfish nodes is given by Eq.(5).

Cmax= Pr [A] =
∑

h

∑

r

PhPr |h(1− (1− Pr [B(h)])r ) (5)

As we said before, this is the ideal fraction of packets originated in normal nodes that reach
their destination, i.e., this is the maximum cooperation,Cmax.

5. Performance Evaluation

Figure 2 compares the maximum cooperation given in Eq.(5) with the maximum cooperation
values obtained with the centralized and distributed algorithms as a function of the fraction of
selfish nodes in a population of 100 nodes. Recall that we measure the cooperation as the fraction
of packets originated by normal nodes that effectively reach their destinations. Figure 2 shows
that not only the values achieved by our distributed bacterial-like algorithm are higher than values
obtained by the centralized model, but also that our algorithm attains cooperation values very
close to the optimal ones, especially under a low fraction ofselfish nodes.
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Figure 2: Maximum achievable cooperation values.
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Figure 3: Evolution of Cooperation under four different environments.

Figure 3 shows the fraction of delivered packets for both normal and selfish nodes as a func-
tion of the plasmid migration periods. Figures are obtainedunder different percentages of selfish
nodes, using the selected PMP length ofR = 100 packets. It can be observed that our evolved
strategies not only achieve a high cooperation among normalnodes but also effectively isolate
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the selfish nodes by reducing their delivered packet ratio toa negligible value. These results
imply the achievement of a high throughput, without a waste of energy in forwarding packets of
selfish nodes (i.e. nodes save battery).

5.1. Comparison centralized vs distributed
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Figure 4: Comparison of centralized and distributed models.

Figure 4 shows the cooperation among normal nodes for our model and for the centralized
one as a function of the average number of packets transmitted per node and the percentage of
selfish nodes. Again, a PMP corresponds toR= 100 packets sent per node. On the other hand, a
generation in the centralized algorithm corresponds to 1734 packets sent per node, as previously
discussed in Section 4.3. The first observation is that our distributed algorithm converges much
faster than the centralized algorithm: while the former requires between 500 and 2000 packets
(from 5 to 20 PMP), depending on the environment, the later requires hundreds of thousands
of packets to converge, corresponding to hundreds of generations. This is an expected result,
since the distributed nature of our algorithm allows a more frequent execution of the evolution
process. The second observation is that the final cooperation values achieved by our distributed
algorit hm are also significantly higher than those of the centralized one. This is not surprising if
we consider that each neighborhood can evolve to different solutions, so that the overlapped and
mobile neighborhoods allow a more complete exploration andexploitation of the search space.

5.2. Dynamic environmental changes

Finally, we verify whether or not our distributed algorithmadapts properly to dynamic envi-
ronmental changes. To do so, we change the number of selfish nodes on the fly during a single
simulation by making some normal nodes to become selfish onesand vice versa.

Figure 5 shows the fraction of normal nodes and the cooperation values obtained by normal
and selfish nodes as a function of time (in PMPs). In the first part of the Figure, each 50 PMPs a
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Figure 5: Adaptation of the cooperation to environmental changes.

node switches its behavior from selfish to normal. After 2000PMPs, nodes start becoming selfish
again with the same frequency (one node changes its behavioreach 50 PMPs). This happens until
4000 PMPs. Then, sudden changes take place at random times. In the Figure, it can be observed
that the cooperation evolved in such a way that it adapted to each new environment in just a
few PMPs, keeping the network at optimal cooperation valuesmost of the time. Notice also that
nodes that became selfish were not able to keep their reputation. This means that our distributed
genetic algorithm is very effective in detecting and isolating selfish nodes and, as a conclusion,
selfish nodes do not cause a relevant waste of energy of cooperative nodes within the network.

In order to analyze in more detail how the adaptation takes place, we plot in Figure 6 a
more detailed simulation, in which the environment changesbetween 60% and 100% normal
nodes every 20 PMPs. At the beginning, with the initial random strategies, both normal and
selfish nodes get very low cooperation from the network but, as the network runs, there is a slow
adaptation towards optimal cooperation among normal nodesand almost total isolation of selfish
nodes (this takes around 12 PMPs). When the selfish nodes switch their behavior to the normal
one, nodes quickly learn the new cooperation conditions andquickly start cooperating. In this
last case, convergence takes only 5 PMPs (compared with the 12 PMPs of the previous case).
Finally, notice that when a normal node becomes selfish again, the network takes approximately
3 PMPs to detect it and isolate it.

5.3. Comparison with related work

In this section, we compare our proposal with other related works for cooperation enforce-
ment in MANETS which are also based on non-cooperative games. To this respect, in (Seredyn-
ski and Bouvry, 2009), the authors present and analyze a centralized system similar to (Seredyn-
ski et al., 2007)3. In this new work, authors keep most of the system structure of (Seredynski

3Remember that (Seredynski et al., 2007) has been used in the article as reference model for comparison purposes.
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Figure 6: Evolution of cooperation under “step” environmenttransitions.

et al., 2007) but they change the encoding of the strategies of intermediate nodes. In particular,
in the new proposal, the cooperation behavior during three consecutive time frames of different
length are included in the codification of the strategy. It isworth to mention that this new work
only studies static scenarios (environmental changes are not considered) and that authors assume
a high interaction between nodes, increasing the number of rounds with respect to their previous
work. In addition, the analysis presented in (Seredynski and Bouvry, 2009) is not focused in
measuring the level of cooperation achieved, but it is focused in analyzing which are the most
popular strategies after several generations. The main conclusion of their work is that the popu-
lar strategies can be seen as variations of tit-for-tat but that none of them resulted evolutionarily
stable in their system. In this sense, another variation of tit-for-tat called generous tit-for-tat
(GTFT) has also been proposed to be used in MANET (Milan et al., 2006). This strategy partly
alleviates the impact of environmental changes by assumingthat the nodes may be generous to
contribute more to the network than to benefit from it. However, as pointed in (Ji et al., 2010),
it is difficult to extend GTFT to a multi-player game scenario like end-to-end transmissions in
multi-hop multi-node MANETs. In our proposal, the overall behavior of the network is opti-
mized by considering the previous forwarding actions of thesource node and the network within
the strategy code. Then, these strategies evolve genetically to achieve an optimal behaviour.

On the other hand, a very close related work is presented in (Komathy and Narayanasamy,
2008). This work uses non-cooperative game theory with a distributed evolution based on BNS
(Best Neighbor Strategy)(Komathy and Narayanasamy, 2007), in which a node decides the strat-
egy to follow by changing to other player’s strategy if deemed worthy. The BNS proposal
distributes the evolution process among the nodes, but the payoff structure strictly encourages
cooperating strategies without taking into account the energy savings of discarding strategies.
Despite the distributed nature of this evolution strategy,our proposal is different from (Komathy
and Narayanasamy, 2008) in three aspects. First, in our proposal the payoffs not only reward
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cooperation but also reward the energy savings of discarding strategies. This payoff structure
models better the natural dilemma a node faces, and also addssignificance to the emerging coop-
eration, because discarding strategies can also give a goodpayoff. Second, in our proposal each
node’s strategy depends on the trust it has on the source of the packet to be forwarded, which, in
turn, depends on the observed behavior history, not only on the outcomes of the random pairing
games. And third, an important strategy criterion for a nodeis how useful has been the network
in relying its own packets to the intended destinations, which better models the motivation for
cooperation.

In (Wang et al., 2010), the authors propose a non-cooperative game based on a repeated
forwarding game. They also define a strategy space with five possible strategies: defection, co-
operation, tit-for-tat, anti-tit-for-tat and random. They divide the time in series of discrete slots,
and they propose a system with a single memory position in which the strategy can be changed
at each slot according to the fitness of the previous slot. They also propose a punishment mecha-
nism, in which cooperating nodes change their forwarding strategy to a more restrictive one when
they notice that their neighbors are doing the same thing. They argue that this kind of punishment
mechanism can make other nodes around the selfish node to decrease their forwarding strategies
and in this way achieve a global punishment. Compared with our results, they only show results
for a network with a single selfish node that suddenly reducesits forwarding behavior and they
do not consider the impact of selfishness in the performance of cooperative nodes.

In (Ji et al., 2010) the authors present an interesting non-cooperative game theoretic frame-
work. The main contribution of this work is that it considersnoisy and imperfect observation.
To tackle this problem, the authors propose to use a belief system using the Bayes’ rule to as-
sign and update a belief (trust) in other nodes. In particular, this belief measure is related to the
probability that a certain node will follow a certain cooperation strategy. The authors develop a
model for the interaction of two nodes and then they try to generalize this model to a multi-node
scenario. As the authors state, a direct design of their system for the multi-node case is difficult.
For this reason, the two-player scenario is used as baselineand a strategy called BMPF (Belief-
based multi-hop packet forwarding) is used to try to improvethe end-to-end performance. To
properly apply the BMPF strategy, the sender needs an updated belief value for each node on the
possible route, which means that a lot of interaction between nodes are needed to take advantage
of the BMPF strategy. On the other hand, their belief value accumulates all the previous history.
Despite they use a discount factor, the accumulation of a long history makes quick adaptability
difficult. To this respect, notice that the behavior of a device can switch to a selfish behavior
because, for example, the node is running out of battery. Whenthere are changes of this type, it
is very important to consider the convergence time requiredfor adaptation to the new conditions.
In the mentioned work, there are not results in this direction, but their results are presented in av-
erage. It is true that their model can partially alleviate changes of behavior by considering them
a kind of imperfect observation but their convergence speedis going to be low in comparison
with ours since they keep long records of interaction history. In our proposal, we have explicitly
analyzed this type of environmental changes and we have shown that in our system the nodes
quickly learn the appropriate cooperation behavior (see our results in Section 5.2).

Finally, in (Jaramillo and Srikant, 2010), the authors present a system called Darwin which is
also based on a non-cooperative game. The strategy proposedin Darwin considers a retaliation
situation after a node has been falsely perceived as selfish.The system assumes that nodes
share their perceived dropping probability with each other. This assumption is made in order
to facilitate the theoretical analysis by isolating a pair of nodes, but in a real implementation, a
mechanism is required to guarantee that even if a node lies, the reputation scheme still works.
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Authors state that the study of this problem in the context ofwireless networks is not solved,
and that they just propose a simple mechanism which relies onother cooperative nodes to tell
the actual perceived dropping probability of a node to minimize the impact of liars. On the
contrary, in our proposal, nodes do not share trust values. Nodes just exchange their strategies
and their associated fitness. The strategies do not contain specific data of particular nodes and a
strategy is used several times only if it provides a good fitness, which can be directly measured
by each node. Regarding performance results, the authors ofDarwin do not show adaptability
measures, but they mention that their system needs to interact for a long time in order to estimate
the discarding probability of neighbor nodes. Simulationsof Darwin show that the nodes that
implement it effectively obtain more cooperation than those that not implement Darwin. Authors
define non-Darwin nodes as those that apply random discard with some probability. Although
their results are not directly comparable with ours, it is interesting to notice that unlike our
system, even when the non-Darwin nodes discard with probability one (which is the definition of
selfish nodes in our work), they still receive a considerablecooperation from the network (around
70%).

6. Conclusions

In this article we have shown that it is possible to use distributed algorithms for the genetic
evolution of strategies in a game theoretic trust model for MANETs. We have proposed a trust
model in which genetic information is exchanged among neighbor nodes, much like plasmid
migration in bacterial colonies. This way we introduce low communication overhead, while
disseminate good strategies throughout the network by means of neighborhood overlapping and
mobility. Our proposal does not need a central entity and does not require unrealistically large
number of node interactions to evaluate the fitness. Insteadof this, each node adapts its strategy
to the dynamical characteristics of the network, trying to maximize its payoff in terms of packet
delivery and resource saving. As an emerging feature of thislocal optimization procedure, the
whole network was able to maximize the cooperation and save energy by offering the forward-
ing service only to those nodes that were willing to cooperate with the network, and isolating
those free-rider nodes that wanted to utilize the resourcesof the network without cooperating
with it. Our distributed model not only achieved these objectives hundreds of times faster than
the centralized model, but also obtained better cooperation values, very close to those predicted
by a theoretical upper bound. Thanks to these features of fast convergence to optimal coopera-
tion values and selfish node isolation, the algorithm also demonstrated a remarkable adaptation
capacity to dynamic environmental changes.
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