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Abstract. Cross-traffic data rate over the tight link of a path can be estimated using 
different active probing packet dispersion techniques. Many  of these techniques send large 
amounts of probing traffic but use just a tiny fraction of the measurements to estimate the 
long-run cross-traffic average. In this paper, we are interested in short-term cross-traffic 
estimation using bandwidth efficient techniques when the cross-traffic exhibits high 
variability. High variability increases the cross-correlation coefficient between cross-traffic 
and dispersion measurements on a wide range of utilization factors and over a long range of 
measurement time scales. This correlation is exploited with an appropriate statistical 
inference procedure based on a simple heuristically modified neuro-fuzzy estimator that 
achieves high accuracy, low computational cost, and very low transmission overhead. The 
design process led to a very simple architecture, ensuring good generalization properties. 
Simulation experiments show that, if the variability comes from a complex correlation 
structure, a single estimator can be used over a long range of utilization factors and 
measurement periods with no additional training.  
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1   Introduction 

Several network parameters and traffic conditions can be inferred from packet dispersion 
measurements, when a sender transmits probing packets of given length at given instants of time, and 
a receiver collects them taking note of their inter-arrival times [1]. For example , if the tight link is  
100% busy between a pair of probing packets, the correlation coefficient between the dispersion 
measurements and the tight-link cross-traffic will be 1, i.e., the dispersion measurement reveals  the 
average cross-traffic rate over that link [2]. Otherwise, this  correlation will be less than one, 
increasing directly with the utilization factor and inversely with the probing packets inter-departure 
times.  

Most available bandwidth estimation techniques send large amounts of probing  traffic (overhead) in 
order to select the tiny fraction of measurements that satisfies the high correlation condition 
[3][4][5][6]. However, several simulation experiments with different synthetic traces exhibiting 
different degrees of variability (not shown here) reveal that this correlation can still be high over a 
wide range of link utilizations and over a long range of measurement time scales  if the traffic’s 
coefficient of variation is high and the traffic exhibits long range dependence. In this work, we 
consider a computational intelligence approach to estimate the competing traffic rate in the tight link 
that, instead of ignoring those measurements during which the tight-link becomes idle, it exploits the 
correlation that still exists between those dispersion measurements and the bursty cross-traffic under 
high variability conditions.  



2   Neuro-Fuzzy Cross-Traffic Estimator 
Consider two probing packets of length L bits, sent T seconds apart over a FIFO link of capacity C 
bps, so that the queue does not empty between the departure of the first packet and the arrival of the 
second packet. The dispersion D will be L/C plus the time taken to transmit the cross-traffic that 
arrived during T. Consequently, we can estimate the average cross-traffic rate during that period of 
length T as X = (D·C – L)/T. If there is no cross-traffic or the cross-traffic is small enough to be 
completely transmitted between probe packet arrivals , both probe packets will find an empty queue 
and the dispersion will be D = T. In any other case, when one or both probe packets find a non-empty 
queue but there are empty periods between the departure of the first packet and the arrival of the 
second packet, the dispersion is a random variable more or less correlated with the cross-traffic 
process, depending on the fraction of time the link was idle. 

Figure 1 shows the results of a simple simulation experiment where we used the estimator above on 
the Bellcore traffic trace BCpAug89 [7] when it shares a T1 link with probe packets sent every 
second. The upper plot shows the true and estimated traffic during a small period, while the lower plot 
shows the corresponding buffer length. The estimator is exact when the link is 100% busy (900 to 940 
seconds) and poor when the link is almost completely idle (990 to 1030 seconds). An intermediate 
performance corresponds to a not too busy link (1065 to 1085 seconds).  
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Fig. 1. Performance of the simple estimator. 

Let µD and σD
2 be the mean and the variance of the previous k  dispersion measures. By observing 

Figure 1, we can establish plausible rules, such as “If µD is far from T, the simple estimation is exact”,  
“If µD is close to T and σD

2 is small, the simple estimation is a poor one”, and “If µD is close to T and 
σD

2 is large, the simple estimation is fair”. This reasoning calls for a fuzzy approach to our estimation 
problem, for which we use a neuro-fuzzy system that allows us to construct an estimator suited to our 
particular training data (Dn, Xn), where Dn is the nth dispersion measurement and Xn is the 
corresponding cross-traffic rate. We decided to use Dn, Dn-1, and the sample mean and variance of the 
last 12 measurements as input variables, because they form a small set that have almost as much 
mutual information with Xn as the joint 12 dispersion measurements together. Next , traffic is centered 
and normalized with respect to the known capacity, C, while the dispersion measurements are 
centered and normalized with respect to T,  
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So that the selected inputs to the traffic estimation system become 
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and the estimator Xn = (Dn·C – L)/T becomes the following simple estimator (SE) 
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Fitting the histograms of each input variable conditioned on an “exact” or “poor” performance of the SE, we 
define fuzzy sets “Far from zero” and “Close to zero” through the following membership functions, 
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Now we use three rules for deciding whether SE is ‘good’, ‘fair’ or ‘poor’ and, for each case, we 
compute an affine transformation of θ1 and θ2. This way, we obtain only three non-linear parameters 
and nine linear ones, increasing regularity, simplifying the training process, and reducing the 
computational cost.  We also use a simple simulation formula to estimate the queue length so that, if it 
is bigger than a given threshold (thr, an additional non-linear parameter), the SE is selected. The 
heuristically modified neuro-fuzzy estimator (HNFE) is  shown in Figure 2. 
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Fig. 2. The fuzzy inference system for classifying the quality of SE, (a), is used to combine the outputs of three 
appropriate affine estimators, (b). The queue heuristic is used to recover the simple estimator (c). 

In a preliminary step for training, we initialize λ1, λ3, and λ4 by fitting the conditional histograms .  
The first step is the computation of the optimal linear parameters by a least square procedure. The 
second step is the computation of the optimal exponents through a quasi-Newton line search 
algorithm.  These two steps are iterated until convergence. Finally, we look for the optimal thr through 
bracketing. The algorithm is so efficient that on the first evaluation of step 1, we already increased the 
signal-to-noise ratio (where the traffic trace is the signal and the estimation error is the noise) from 2 
dB for SE to 9.3 dB for HNFE . After four iterations, we achieved 14.2 dB, and when we added the 
queue heuristic, we obtained a final performance of 14.9 dB on the training data. The whole procedure 
took a few seconds on a typical PC, for a one-hour traffic trace.  

3  Numerical Results and Conclusions  

Figure 3(a ) reproduces Figure 1 with the new HNFE  estimator. To check for generalization properties, 
we used the same HNFE estimator, without additional training, on a different traffic trace (a 768 kbps 
MPEG4 version of “Jurassic Park” [8]) under different link utilization factors, ρ, and different 
measurement periods, T. The estimation SNR is shown in Figure 3(b). The system exhibits a 
remarkable invariance with time scale and results very useful in a long range of traffic intensities, 
without any modification to the trained HNFE.  

Concluding, in this paper we show that the high variability of modern networks traffic can be 
conveniently exploited for better instantaneous estimations within the range of time scales at which 
the high variability is exhibited. We devised a heuristically modified neuro-fuzzy cross-traffic 



estimator that is highly accurate, even for low long-run traffic intensities, as long as the variability 
allows for the presence of measurement periods with high link occupancy. This accuracy is achieved 
with very low computational complexity and at a minimal transmission overhead. 
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Fig. 3. Performance of the HNFE on the training data (a). SNR under different network conditions for a video 
cross-traffic trace (b). 
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