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Abstract 
 
We create software tools for the generation of sample traces of self-similar traffic as fractional Brownian 
motion, using Mathcad. These methods have been widely used in simulation studies, but they present the 
difficulty of generating negative samples. So we also introduce a very efficient technique for the generation 
of multifractal traffic by means of wavelet synthesis, which posses the property of positiveness. 
 
1. Introduction 
 
Traffic modeling is an important aspect to consider when we want to optimize the use of communication 
resources while guaranteeing a given quality of service. 
 
In the early years of telecommunication technology, it was enough to characterize the number of calls as a 
Poisson process and their duration as exponential variables. Later on, data communications introduced 
greater complexity due to waiting times and medium access schemes. But, with the deployment of broadband 
networks that carry multimedia traffic, now we need to characterize not only the number and duration of the 
calls but also the bandwidth variability of the information flow during the call. 
 
Several models have been developed to this purpose, which try to capture the bursty nature of multimedia 
traffic. The principal modeling technique has been the multiplexing of on-off sources, which lead to Markov 
modulated processes. 
 
However, recently there has been empirical evidence that traffic in Ethernet, Internet, MPEG Video, etc. is 
characterized by a significant correlation over a broad range of time scales. This large-scale correlation can 
lead to a long-range dependent behavior, i.e. one in which the autocorrelation function is not summable. The 
simplest long-range dependent processes are the self-similar processes, characterized by a hyperbolically 
decaying autocorrelation function. 
 
There is a significant impact of long-range dependent traffic on queueing behavior, which is not predicted by 
classical traffic models. However, we still need much further research (including fundamental mathematical 
research) to develop analytical models that can predict these effects. In the meanwhile, simulation methods 
provide any degree of accuracy (although at very high computational costs) for both, performance analysis 
and analytical model validation. 
 
In the first part of this report we review some basic concepts of fractals and create some software tools for 
the generation of sample traces of self-similar traffic. These traces are of the fractional Brownian motion 
type, which has been the most broadly applied fractal signal model because of its power and simplicity: it is 
statistically self similar and, still, it is subject to tractable analysis. 
 
In the second part we introduce the multifractal wavelet model. Wavelet analysis is an adequate technique for 
studying fractional Brownian motion because the wavelet coefficients become independent zero-mean 
Gaussian random variables with power-law decaying variance. Unfortunately these fractional Brownian 
motion has a significant limitation for modeling actual processes which are inherently positive, like network 
traffic. The multifractal wavelet model overcomes this difficulty in a very promisory way. 
 
 
 



2. Fractals, self-similarity and fractional dimension 
 
Diverse scientific disciplines have adopted the language of fractal geometry, including the modeling of 
multimedia traffic in communication networks.  

A fractal is a geometric shape 
that exhibits invariance under 
changes of magnification. A 
good example is the Von Koch 
snowflake curve (Figure 1), 
which is constructed by divi-
ding a simple line segment into 
thirds and replacing the middle 
segment by two equal segments 
as in an equilateral triangle. The 
procedure is repeated for each 
new segment. Notice that, if we 
magnify a small portion of the Von 
Koch curve, we reproduce exactly 
a larger portion. This property is 
called exact self-similarity. 

 
Accordingly, a line is a one-dimensional exact self-similar shape, which can be divided in to N identical 
lines, each of which is scaled down by the ratio r = N-1. A square is a two-dimensional exact self-similar 
shape, which can be divided in to N identical squares, each of which has a size scaled down by the ratio r = 
N-1/2. A cube is a three-dimensional exact self-similar shape, which can be divided in to N identical cubes, 
each of which has a size scaled down by the ratio r = N-1/3.  Generalizing, a D-dimensional self-similar object 
can be divided into N smaller “copies” of itself, each of which is scaled by a factor r = N-1/D. Then, given a 
self-similar object of N parts scaled by a ratio r from the whole, its fractal or similarity dimension is given by 
D = log(N) / log(1/r) 
 
In the Von Koch curve, each segment is composed of four sub-segments, each of which is scaled by a factor 
of 1/3, so D = log(4) / log(3) = 1.26. So this curve fills the space more than a single line (D=1) but less than 
an Euclidean area of the plane (D=2). In the variation of the Von Koch algorithm shown in figure 2, each of 
the segments is replaced by 8 new segments, each ¼ of the original length, so the fractal dimension is 
log(8)/log(4) = 1.5. As a final example, the variation of figure 3 has fractal dimension log(9)/log(3) = 2, since 
each of the segments is replaced by 9 new segments, each 1/3 of the original length. 
 
2.1 1/f-noise 
 
In our traffic model project we are not interested in exact self-similarity but in statistical self-similarity. This 
happens when a large-scale view is insufficient to predict the exact details of a magnified view; i.e. 
magnified segments look like, but never exactly like, segments at different scales.  In this case, the 
corresponding figures could be seen as noise patterns due to their unpredictability. The traces made by such 
noises are fractal curves where the fractal dimension is directly related to the logarithmic slope of the spectral 
density. 
 
In a brownian motion the spectral density varies as 1/f2. In a white noise, the spectral density is a flat line 
(varies as 1/f0). But in many physical systems, the noise has an spectral density that varies as 1/fβ, 0.5 < β < 
1.5; those noises are called, in general, 1/f-noises. So we should start this project with the generation of this 
kind of noises. 
 

Figure 1.  Von Koch Snowflake Curve (D=1.26)

Figure 2. Variation with D=1.5

Figure 3. Variation with D=2



2.2 Fractional Brownian Motion 
 
A fractional brownian motion VH(t) is characterized by a parameter 0 < H < 1, which relates the typical 
change in V, ΔV = VH(t2) – VH(t1), to the time difference Δt = t2 – t1 by the simple scaling law  ΔV ∝ ΔtH.  
More precisely, the increments VH(t2) – VH(t1) have a Gaussian distribution with variance <|VH(t2) – VH(t1)|

2> 
=  |t2 – t1|

2H.  
 
We say that the increments of V(t) are statistically self-similar in the sense that V(to+t)-V(to) has the same 
joint distribution function of r-H(V(to + rt)-V(to)) for any to and r>0. Choosing to=0 and V(0)=0, this means 
that V(t) and r-HV(rt) are statistically indistinguishable. 
 
The particualr case H=1/2 corresponds to the well known Brownian motion. A simple way to generate a 
Brownian motion is by integrating a white noise, as the Mathcad program of figure 4 shows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Mathcad program for generating Brownian motion via white noise integration 
 
From the above it is clear that E[Vi]=0 and Cov[Vi,Vj] = |i-j|, this is, V(t2)-V(t1)  is normal with mean 0 and 
variance σ2|t2 – t1|. Accordingly, we could also select V(1) as a sample of a N(0,σ2) random variable (having 
V(0)=0). For 0 < t1 < t2 < 1 we expect the variance of V(t2)-V(t1) to be σ2(t2 – t1)  so we can set V(0.5) such 
that V(0.5)-V(0) = 0.5[V(1)-V(0)] + x1, where x1 is a sample of a N(0,0.25σ2) random variable, so the total 
variance of V(0.5) – V(0) will be 0.5σ2 as expected. The same holds for V(1)-V(0.5). 
 
In the next step we set V(0.25) – V(0) = 0.5[V(0.5) – V(0)] + x2, where x2 is a sample of a N(0,0.125σ2) 
random variable, so the total variance of V(0.25)-V(0) will be 0.25σ2 as expected. The same holds for V(1)-
V(0.75). We can continue in this way with xn distributes as N(0,σ22-(n+1)) as in the recursive algorithm of 
figure 5, called "midpoint displacement". 
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Figure 5. Mathcad program for generating Brownian motion via Midpoint displacement 
 
Finally, we can interpret the Brownian motion as the cumulative displacement of infinite independent jumps, 
V(t) = Σn=-∞

∞ SnU(t-tn),  where Sn are independent Gaussian random variables, tn are independent Poisson 
random variables and U(t)=1 for t>0 and U(t)=0 elsewhere. This interpretation is useful for us in the sense 
that the traffic intensity could vary by an amount Sn at instant tn (an scene change in a movie, an activation of 
deactivation of an user in a big multiplexer, etc.). Figure 6 shows this new algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Mathcad program for generating Brownian motion via independent cuts 

 
 

mxL
ln N( )

ln 2( )
L 1 mxL. . Number of levels, index of levels

σ
0

1 σ
L

2 0.5 L 1( ).( ) Array of standard deviations

MidPoint X i0, i2, L,( ) i1 0.5 i0 i2( ).

X
i1

0.5 X
i0

X
i2

. σ
L

wn
i1 1

.

X MidPoint X i0, i1, L 1,( )

X MidPoint X i1, i2, L 1,( )

L mxL<if

X

Midpoint

Displacement

Recursive computation:

Previous midpoint

Next  midpoint

Update the array
bm

0
0 bm

N
wn

N 1
Init ialize the endpoints

bm MidPoint bm 0, N, 1,( ) Actual recursion

Brownian Motion

BM NS( ) X
N 1

0

k0 floor N rnd 1( ).( )

k1 k0
N

2
1

X
k

X
k

wn
s

k N<if

X
k N

X
k N

wn
s

otherwise

k k0 k1..∈for

s 0 NS 1..∈for

X

Initialize the array

Number of steps

Ends of the cutted segment,
The segment has length N/2

Displace this segment

s s

Brownian Motion

NS=1000

NS=200

NS=50

NS=20

NS=10



The generalization Var[V(t2) – V(t1)] = σ2|t2 – t1|
2H  for 0<H<1 corresponds to a Fractional Brownian Motion 

(in previous simple Brownian motion,  H=0.5).  Now self-similarity means that   V(t0 + t) – V(t0)  and           
r-H[V(t0 + rt) – V(t0)] have the same distribution. In the midpoint displacement algorithm, we simply redefine 
the sequence of variances σL to reflect its dependence on H. Figure 7 shows the effect of H –compare the 
case H=0.5 with figures 4, 5 and 6-. 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Fractional Brownina motion by Midpoint displacement 
 
Whereas self-similar shapes repeat (statistically or exactly) under a magnification, fractional brownian 
motion repeats statistically only when t and V are magnified by different ammount : if t becomes r⋅t, V must 
become rH⋅V (for a random walk (H=1/2) we must take four times as many steps to go twice as far). This 
scaling property is known as self-affinity. 
 
Fractals, as euclidean shapes, reduce their dimension by one under intersection with a plane. 3D sphere  
2D circle  1D line  0D point. Similarly, the intersection of a fractal curve with fractal dimension 1 < D < 
2 and a straight line is a fractal set of points of fractal dimension D-1. If the straight line eliminates one of the 
coordinates, a self-affine curve can be reduced to a self-similar set of points. 
 
The zeroset of a fractional brownian motion is the intersection of VH(t) with the t-axis (all points such that 
VH(t)=0). It’s a disconnected set of points with topological dimension 0 and a fractal dimension  0 < D0 = 1 – 
H < 1, VH(t) is self-affine, but its zeroset is selfsimilar. Consequently, D = D0 + 1 = 2 – H 
 
The trace of a fractional brownian motion with H=0.8 resembles a mountainous horizon. Replace t by (x,y) 
to obtain VH(x,y) as the surface altitude at position (x,y).  Analogous to VH(t), if a hiker travels a distance Δr 
= √(Δx2 + Δy2), the typical altitud variation ΔV is proportional to ΔrH. The fractal dimension D must be 
greater than the topological dimension 2 of the surface : D = 3 – H. Once again, the intersection of a plane 
with the surface VH(x,y) is a self affine fractional brownian motion with fractal dimension  D0 = D – 1 = 2 – 
H. This generalization can go to higher dimensions : An observer moving at a constant speed along a straight 
line on VH(x,y,z) generate a fractional brownian motion with  ΔV ∝ ΔrH, where Δr = √(Δx2 + Δy2 + Δz2). In 
this case, the fractal dimension is D = 4 – H. The zeroset VH(x,y,z) = constant gives a self-similar fractal with 
D0 = 3 – H. 
 
A statistically self-affine fractional brownian function VH provides a good model for many natural scaling 
processes and shapes : VH(t) for noises and music, VH(x,y) for landscapes and surfaces, VH(x,y,z) for flakes 
and clouds, etc. In all cases, the scaling property may be characterized by H, D or even the “spectral 
exponent” β :   V(t)  ⇔ SV(f) ~ |V(f)|2/Δf ∝ 1/fβ. (As we said before, this is why they are called 1/f-noises). 
 
Variations on H are related with variations on β very simply : For a fractional brownian motion function of E 
variables (t, (x,y), (x,y,z),...) , D = E + 1 – H = E + (3 - β) / 2. 
 

Fractional Brownian Motion

H=0.75

H=0.5

H=0.25



For 0 < H < 1 we have E < D < E+1 and 1 < β < 3. H~0.8 is empirically a good choice for many natural 
phenomena, including fractal traffic. 
 
Figure 7 showed the generation of a fractional Brownian motion by the midpoint algorithm. We can also use 
the independent cut scheme of figure 6 since, changing the step function, we can generate fractals with 
different H and D. Thus U(t) = tH-1/2 for t ≥ 0 and U(t) = -|t|H-1/2 for t < 0 can be used to generate a fractional 
brownian motion with H different from ½ as V(t) = Σn=-∞

∞ SnU(t-tn). The following figures were generated 
this way, with H = 0.8 : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Fractional Brownian motions as functions of one and two variables 
 
 
However, this method is computationally expensive. A typical approach is, then, by FFT filtering. A white 
noise W(t) has a “constant” spectral density SW(f). If we filter it with a transfer function T(f), the output V(t) 
has a spectral density SV(f) = |T(f)|2SW(f) ∝ |T(f)|2. Selecting T(f) ∝ 1/fβ/2 we obtain an  1/fβ -noise. The 
following canyon is a 2-dimensional white noise filtered by Tn,k = 1/(n2 + k2), created with 10, 25 and 100 
frequency components: 
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Figure 9. A fractal canyon created by filtered white noise 
 
2.3 Wavelet synthesis of Fractional Brownian Motion 
 
The wavelet transform is an analysis technique very well suited for studying multiscale phenomena, just like 
the signals we are considering in this report. 
 
The wavelet transform represents a 1-dimensional signal X(t) in terms of shifted and dilated versions of a 
prototype bandpass wavelet function ψ(t) and a lowpass scaling function φ(t). For special choices of the 
wavelet and scaling functions, the shifted and delayed versions ψjk(t) = 2j/2ψ(2jt-k) and φjk(t) = 2j/2φ(2jt-k) 
form an orthonormal basis for the real functions, with the following signal representation: 

w

w

w



For a wavelet ψ(t) centered at time zero and frequency f0, the wavelet coefficient Wj,k gives the amplitude of 
the signal at time 2-jk and frequency 2jf0, while the scaling coefficient Uj,k gives the local average at that time. 
So j is an index of scale. 
 
The Haar scaling and wavelet functions (Figure 10), is the simplest example of an orthonormal wavelet basis.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Haar wavelet and scaling function prototypes 
 
Note the supports of fine-scale wavelet and scaling functions nest inside those at coarser scale. This property 
will be adequately exploited in next section. 
 
The wavelet transform is an approximation of the Karhunen-Loéve expansion for fractional Gaussian noise. 
In effect, the wavelet coefficients become independent zero-mean Gaussian random variables with power-
law decaying variance, var(Wj,k) ∝ 2-jr, where r is 2H-1 for fractional Gaussian noise. This suggest the 
procedure of figure 11 for generating traces of fractional Brownian motion.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11. Fractional Brownian Motion by Wavelet Synthesis 
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3. The Multifractal Wavelet Model 
 
Despite their great simplicity, fractal models based on fractional Brownian motion and fractional Gaussian 
noise have a significant limitation: Since they are Gaussian, there will be always the possibility of generating 
negative samples. Of course, traffic data are inherently positive and, besides, its distribution is spiky, far 
away from Gaussian smoothness. Furthermore, many real traffic traces exhibit Long Range Dependence but 
their short-term correlation and scaling behavior do not agree with the strict self similarity of these models. 
 
Fortunately, for the Haar wavelet there is a simple condition the ensure the positiveness of the synthesized 
signal: |Wj,k| ≤ Uj,k for every j,k. In the multifractal wavelet model this characteristic is used by modeling the 
wavelet coefficients as Wj,k = Aj,kUj,k, where the multipliers Aj,k are independent  random variables taking 
values between -1 and 1. 
 
A multifractal is a fractal random process for which the parameter H depends on time on an erratic way, so 
the scaling behavior of the moments, as the signals are aggregated, is a nonlinear function of the moment 
order (like several fractals interwoven together: multi-fractals).  
 
The multifractal wavelet model can capture closely the power spectrum (and consequently the long range 
dependence) of a set of training data, by adjusting the variances of the multipliers. And, unlike fractional 
Gaussian noise, it can also match positiveness and higher order statistics. 
 
Taking advantage of the Haar wavelet properties, the algorithm for multifractal traffic generation is as 
follows: 
 

Figure 12. Multiplicative cascade for generating multifractal traces (notice we really do not need to store the 
multipliers, nor the wavelet coefficients. Further, we only need two consecutive scaling coefficient.) 
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In figure 12 we used U0,0=1 and an uniform distribution between -0.6 and 0.6 for the multipliers, 
independently of the scale. Of course, the model should be completed by specifying probability density 
functions for those random variables. The correlations and long range dependence of the output signal are 
controlled through the wavelet energy decay, while higher order moments and marginal pdf are controlled 
through the scaling coefficient moments. 
 
Actually, the high quality of the matching among real and simulated traffic traces suggests that some of the 
mechanisms shaping the traffic flow might have an inherent multiplicative structure. Normally, self-similar 
additive schemes model traffic arrivals as a mean rate with superimposed fractional Gaussian noise 
fluctuations, which agrees with the conception of traffic as the superposition of individual components and is 
accurate on large time scales. The multifractal wavelet model represent traffic arrivals as the product of 
random multipliers, which looks like the partition of total traffic throughput into parts and becomes 
appealing when considering small time scales. 
 
4. Conclusions 
 
Fractional Brownian motion and fractional Gaussian noise have been useful models in the study of the long-
range dependence phenomena in network traffic, especially because of its tractability. 
 
On the other hand, the multiplicative wavelet model combines the power of multifractals with the efficiency 
of the wavelet transform in characterizing and synthesizing positive long-range dependent data, particularly 
network traffic loads.  
 
We have presented several methods for generating simulated traces of this kind of traffic. Hopefully, the use 
of simulation studies will help us discover the effects of these new traffic characteristics on the general 
performance of the communication networks. 
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