
Distributed Evolution of Strategies in a Game
Theoretic Trust Model for Mobile Ad Hoc

Networks
Marcela Mejia1, Marco Alzate2, Jose L. Muñoz3, Néstor Peña1 and Oscar Esparza3

1Universidad de los Andes
2Universidad Distrital

3Universidad Politécnica de Cataluña

am.mejia75@uniandes.edu.co, malzate@udistrital.edu.co,
jose.munoz@entel.upc.edu, npena@uniandes.edu.co, oscar.esparza@entel.upc.edu

Abstract—Cooperation among nodes is fundamental for the
operation of mobile ad hoc networks (MANETs). However, in
these networks there could be selfish nodes that use resources
from other nodes to send their packets but do not offer their
resources to forward packets for other nodes. Several trust mod-
els have been proposed as mechanisms to incentive cooperation
in MANETs. Some of them are based on game theory concepts.
Among game theoretic trust models, those that make nodes’
strategies evolve genetically have shown promising results for
cooperation improvement. However, current approaches propose
a highly centralized genetic evolution so they cannot properly
adapt to fast changing conditions. In this paper, we propose a
game theoretic trust model that uses a bacterial-like algorithm
to let the nodes quickly learn the appropriate cooperation
behavior. Our model is completely distributed and achieves good
cooperation values in a small fraction of the time compared with
centralized algorithms.

Keyword—MANET, Trust models, Game theory, evolutionary
algorithm

I. INTRODUCTION

Mobile Ad Hoc NETworks (MANETs) are infrastructure-
less networks formed by wireless mobile devices with limited
resources. Source/destination pairs that are not within trans-
mission range of each other must use intermediate nodes as
relays [1]. MANETs are particularly vulnerable to selfish be-
havior, as some nodes may prefer saving resources instead of
forwarding packets on behalf of others [2]. Thus, it is impor-
tant to encourage the nodes to participate in essential network
functions such as packet routing and forwarding. In this sense,
several trust models have been proposed as mechanisms to
incentive node participation within the network [3]. A trust
model is a conceptual abstraction to build mechanisms for
assigning, updating and using trust levels between the entities
in a distributed system [4]. The trust model becomes a tool for
helping the subject of a distributed system to select the most
reliable agent among several others offering a service [4].
Many different mechanisms have been used in the literature
to design trust models for mobile ad hoc networks [3]. The
problem of deciding whether to cooperate (and improve the
trust) or not to cooperate (and save resources) can be seen as a
game. For this reason, many of the proposals in the literature
are based on game theory concepts [2], [5], [6]. Among
the proposals in the literature, the trust model presented by

Seredynski et. al. in [7] is interesting because it presents a
way of dynamically adapting the collaboration strategy to
the network conditions. The evolution is performed using a
genetic algorithm that presents promising results regarding
cooperation improvement. However, there are still serious
concerns about the highly centralized nature of the approach
and its slow convergence. Indeed, the optimal strategies are
obtained by using a centralized entity that runs a conven-
tional genetic algorithm after a large number of interactions
between nodes to evolve the set of strategies. Taking into
account the drawbacks of the previous proposal, in this paper
we present a distributed bacterial-like evolution algorithm
based on a few interactions among nodes. Our model does
not assume a central entity nor requires an unrealistically
large number of interactions among nodes to evolve the
strategies. It is based on distributed parallel cellular genetic
algorithms [8],[9],[10],[11],[12] where genetic information
is interchanged among neighbor nodes (much like plasmid
migration in bacterial colonies [13],[14]). This way, each
individual node selects the strategy that locally maximizes its
payoff in terms of packet delivery and resource saving. This
local payoff maximization is such that globally the whole
network increases the cooperation (and, consequently, the
throughput) and reduces the resources wasted serving selfish
nodes. The rest of the paper is organized as follows. Section
II briefly describes the trust model of [7], because we base
our proposal on it. Section III introduces our trust model and
its evolutionary algorithm. Section IV shows some numerical
results and compares them with the previously published
results of [7] and with a theoretical upper bound on the
maximum achievable cooperation. Section V concludes the
paper.

II. CENTRALIZED EVOLUTION ALGORITHM

In [7], the interactions among nodes are based on the iter-
ated prisoner’s dilemma under the random pairing game [15].
Each intermediate node utilizes a strategy that defines whether
it should retransmit or discard a packet that comes from a
certain source node. The strategy depends on two aspects:
the past behavior of the network when the intermediate node
acted as source node and the trust level that the intermediate



node has in the source node. The model is comprised of a
trust evaluation mechanism, a game based network model, a
strategy and a genetic algorithm to evolve the strategy.

A. Trust evaluation mechanism

Each node maintains a trust table based on the observed
behavior of its neighbors. For example, if node B is observing
node A, which is within its transmission range, it can know
the number of packets that has been sent to A to be for-
warded, pcsA, and the number of packets that A has actually
forwarded, pcfA. So B can compute the forwarding rate of
A fr(B, A) = pcfA/pcsA. With this rate, B can determine
the trust level it should have in A, T {B : A}, as shown in
Table I.

Tabla I
RELATION BETWEEN DELIVERY RATE AND TRUST LEVEL

fr(B, A) T {B : A}
1− 0.9 3

0.9− 0.6 2

0.6− 0.3 1

0.3− 0 0

B. Game-based network model

Each game starts with the transmission of a new packet
from a source node and ends either when the packet is
delivered to its destination, or when an intermediate node
decides to discard the packet. Once the game has finished,
each participant receives a payoff according to the decision
it took and its trust level on the source node. In this model,
two types of nodes are defined: source nodes and intermediate
nodes. Therefore, two types of payoff tables are maintained,
as shown in Table II.

Tabla II
PAYOFF TABLES

Source Node

Transmission Status Payoff

Successful 5

Failed 0

Intermediate Node

Trust Level

Decision T = 3 T = 2 T = 1 T = 0

Cooperate 3 2 1 0.5

Discard 0.5 1 2 3

C. The strategy

The strategy that a node has to follow when it is acting
as intermediate node is represented by a string of bits. Each
bit represents a decision (Discard (0)/ Cooperate (1)) taking
into account a set of parameters. In [7], this set of parameters
is formed by: (i) the transmission status of the two previous
games that the node has played as source (which could be
success (S) or failure (F )) and, (ii) the trust level that the
node has in the source node. The resulting strategy has 18

bits and an example is shown in TableIII. Notice that two
additional bits are used when the node has played less than
two games as source node.

Tabla III
STRATEGY CODING, EXAMPLE STRATEGY 0000 0011 0101 1010 11

Source Trust Level 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

Transmission Status −2 S F S F S F S F S F S F S F S F

Transmission Status −1 S S F F S S F F S S F F S S F F

Current Decision D D D D D D C C D C D C C D C D C C

D. The genetic algorithm

The genetic algorithm aims to maximize the mean payoff
of each node. Initially, nodes have a randomly generated
strategy and, then, series of ”tournaments” are played to
calculate the payoff that nodes will receive for their actions.
The fitness of each player’s strategy is evaluated as the average
payoff per event. According to this fitness, 2N strategies
are selected through a roulette wheel mechanism, where N
is the number of participating normal nodes. Applying a
standard one point crossover and a standard uniform bit flip
mutation over these 2N strategies, a set of N new strategies
is generated and the whole process is repeated during a
certain number of generations. The results of the simulations
in [7] show that the strategies evolve to adapt to different
environments, where an environment is characterized by a
given number of selfish and normal nodes. Finally, we clarify
some definitions used in [7]. A ”tournament” is played among
50 nodes, randomly selected from a total population of 100
nodes, where each tournament is composed of 300 ”rounds”.
A round is composed of 50 (successful or failed) packet
transmissions or ”games”. Since each of the 100 nodes must
participate in at least two tournaments per generation, the
average number of tournaments per generation is 11.56, for
a total of 11.56 × 300 × 50 ÷ 100 = 1734 packets per node
per generation, in average. This number will be important to
compare the efficiency of this centralized algorithm with our
distributed algorithm.

III. DISTRIBUTED BACTERIAL-LIKE EVOLUTION
ALGORITHM

The proposal in [7] fairly represents the dilemma of for-
warding packets to gain trust or discard them to save energy
in a MANET. However, it has an expensive fitness evaluation
mechanism and a highly centralized evolution algorithm,
since, after each tournament, a central entity should collect
all the strategies and their firtness in order to compute and
redistribute the new evolved strategies. This makes the model
unfeasible for implementation in a real MANET. For this
reason, we propose and evaluate a distributed model based
in [7], in which we keep the trust evaluation mechanism,
the game based network model and the strategy but change
the genetic algorithm to evolve the strategy. Indeed, we omit
both the central entity and the costly process of having multi-
ple generations by allowing the nodes to exchange genetic
material among their neighbors, like plasmid migration in
bacterial colonies [13]. A plasmid is an extrachromosomal
DNA molecule that bacteria can take up from the external
environment, in order to obtain a gene that gives the cell a



selective advantage. When the cell replicates, it makes copies
of the acquired plasmid [14]. This model can be used in
evolutionary algorithms instead of the traditional Darwinist
method used in [7]. The plasmid migration is a greedy
algorithm that, at each step, makes apparent good decisions
without regarding for future consequences and, as such, can
lead only to locally optimal solutions. In contrast, these
solutions can be obtained very quickly, enhancing adaptability
at the cost of optimality. For us, the foremost characteristics
of the algorithm are its distributed implementation and its
convergence speed. These features make the algorithm readily
implementable in a MANET environment.

In our algorithm, we evolve the strategies on-line during
the life of the network instead of using a centralized entity to
run the genetic algorithm for each generation, and different
tournaments to evaluate the strategies at each generation. So,
we keep the concepts of ”game” and ”round” of [7] but
omit those of ”tournament” and ”generation”. A game is a
successful or failed packet transmission for which a source
node selects the most trusted h-hop route among r possible
routes. The number of hops, h, obeys a probability distribution
ph and, given h, and the number of routes, r, obeys a condi-
tional probability distribution pr|h. These distributions will be
used below to compute the maximum achievable cooperation.
A round is a set of 100 games in which each node plays
once a game as source. The evolution goes through periods
of R rounds, called Plasmid Migration Periods (PMP), after
which every node interchanges genetic information with its
neighbors. Figure1 shows how our distributed model works.
Each node starts with a random strategy, whose fitness is
evaluated during a PMP of R rounds. At the jth PMP, node
i interchanges its strategy si(j) and its fitness fi(j) with
its one-hop neighbors. Each node selects a potential parent
strategy among the neighbor strategies through the roulette
wheel process, and then:
• If the current fitness fi(j) of the node is better than the

selected one fN (j), the node keeps its own strategy by
skipping the crossover process.

• Otherwise, the selected strategy is combined with the
current strategy of the node using a one point crossover.

Finally, the resultant strategy suffers a standard uniform
bit flip mutation process before going to a new PMP for
evaluation. The process is repeated during the life time of
the network. If we choose the number of rounds in a PMP
as R = 1734, a PMP in our distributed algorithm would be
equivalent to a generation in the centralized algorithm of [7].
However, our algorithm converges much faster, which allows
us to use lower values for R and, at the same time, have a
convergence in a PMP similar to the convergence achieved
in a generation in [7]. This means that our algorithm will be
close to 1734/R times faster than the centralized one. In the
next section we perform some experiments to determine R.

IV. NUMERICAL RESULTS

In this section we show some evaluation results to demon-
strate the usability of our proposal for the MANET scenario.
As in [7], all the simulations have been independently repli-
cated 60 times. One of the first experiments was aimed at
deciding R (i.e. the length of a PMP). For this purpose, we

Evaluate the current strategy, si(j), through R rounds, finding its fitness fi(j).

Choose randomly its own strategy, si(0)

Collect the strategies and fitness of the one-hop neighbors and run a roulette wheel selection to find 
a potential parent strategy, sN(j), with fitness fN(j).

j← 0

fi(j)>fN(j)

Choose si(j+1) ← si(j) Choose si(j+1) as a standard one point crossover between si(j) and sN(j)

Compute a standard uniform bit flip mutation on si(j+1).

j← j+1

yes no

Fig. 1. On-Line distributed evolutionary algorithm

computed the cooperation evolution for R = 25, 75 and 300
rounds under different number of selfish nodes within the
population of 100 nodes. The results obtained (not included
here due to space constraints) show that in all the cases the
cooperation converged to steady values after a few hundred
plasmid migration periods. The cooperation achieved with 75
and 300 rounds per migration period was very similar in
every scenario, although the convergence was faster with 75
rounds per PMP than with 300. With 25 rounds per PMP, not
only the convergence took longer, but also converged to lower
cooperation values. Because of these results, we decided to
use a PMP of R = 75 rounds. Figure 2 plots the average
cooperation as a function of the number of packets generated
per node, comparing the evolution speed of our distributed
algorithm and the centralized algorithm of [7] under different
fraction of selfish nodes. We compare the first 250 generations
of the centralized algorithm, corresponding to an average of
433500 packets generated per node (in grey color), and the
first 2500 PMPs of our distributed algorithm, corresponding
to 187500 packets generated per node (in black color). The
continuous lines correspond to a scenario with no selfish
nodes, the dashed lines correspond to a scenario where 20%
of the nodes are selfish, the dashed-dotted line is for 50% of
selfish nodes and the dotted line is for 60% of selfish nodes.
The centralized algorithm starts at 1734 packets transmitted
per node because that corresponds to the first generation. The
distributed algorithm starts at 75 packets, corresponding to the
first PMP.

The figure2 shows that our algorithm converges much
faster than the centralized one. The improvement achieved
over the convergence speed is above an order of magnitude,
although the best cooperation achieved is lower for our
distributed algorithm than for the centralized one when there
are selfish nodes within the network. This behavior can be
explained because (1) the parallel evolution only considers the
genetic information of local individuals instead of the global
information of the whole population, (2) the fitness is not
as thoroughly evaluated with 75 transmitted packets as with
1734, and, fundamentally, (3) the nodes carry the reputation
of the strategies they used before the previous PMP.

In order to compare the maximum achieved cooperation of
the centralized and distributed algorithms, below we develop a
theoretical expression of the maximum achievable cooperation



 

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Convergence speed

Number of packets transmitted per node

C
oo

pe
ra

tio
n

 

 
0% selfish nodes
20% selfish nodes
50% selfish nodes
60% selfish nodes
250 generations of [7]

Fig. 2. Maximum achievable cooperation values

under an optimal strategy with perfectly computed trusts. For
this purpose, we assume that the selfish nodes are completely
identified and that, with this information, the normal nodes
cooperate among them and discard the packets of selfish
nodes. This is the ideal condition that any trust model would
like to achieve. In this condition, a packet will get through
whenever the path is composed exclusively of normal nodes,
which occur with the probability shown in Equation (1), where
Ph is the probability that the path length is h hops, Pr|h is the
probability of finding r routes given that the path length is h
hops, A is the event a packet finds at least one route made out
exclusively of normal nodes and B(h) is the event there are
no selfish nodes among h randomly selected nodes. Clearly,
the ideal condition implies that the best possible cooperation,
Cbest, is the probability of A. The probability of B(h) is
given in Equation (2), where NN is the number of normal
(not selfish) nodes and N is the total number of nodes.

Cbest = Pr[A] =
∑

h

∑
r

PhPr|h(1− (1− Pr[B(h)])r) (1)

Pr[B(h)] =
h−1∏
i=0

NN − i

N − i
(2)

Figure3 compares the theoretically maximum achievable
cooperation with the maximum values obtained through the
centralized and distributed algorithms. Except when there are
no selfish nodes, our best values are lower than those of
the centralized algorithm and even farther from the optimal
ones. Nevertheless, our values, which are obtained on-line in
a distributed way, are close to those obtained in a centralized
way.

There is a tradeoff between optimality and adaptability
in terms of the length of the PMP, since it will determine
the accuracy of the fitness evaluation. In [7], since each
node generates an average of 1734 packets per generation
before going through the genetic evolution algorithm, there
is a highly accurate estimation of the fitness at the cost of
a prohibitively large convergence time. Besides, in [7] the
central entity knows the strategies of all the nodes and their
fitness, so this central entity knows the entire space of feasible
strategies to compute the next generation and distribute it over

all the nodes. In our approach, we accept a higher variance
in the evaluation of the fitness by reducing the PMP to only
a few node interactions. This allows us both to replace the
central entity by a distributed plasmid migration based on
locally interchanged information over one-hop neighbors, and
to run this plasmid migration often enough for the nodes to
converge on line to good strategies. This makes our scheme
implementable in a real MANET, because it exploits its
distributed organization and takes advantage of the clustered
nature of its topology.

 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

C
oo

pe
ra

tio
n

Fraction of selfish nodes

 

 
Theoretical optimum
Centralized algorithm
Distributed algorithm

Fig. 3. Maximum achievable cooperation values

V. CONCLUSIONS

In this paper we have shown that it is possible to use
distributed algorithms for the genetic evolution of strategies in
a game theoretic trust model for MANETs. We have proposed
a trust model in which nodes interchange genetic informa-
tion among neighbor nodes, much like plasmid migration in
bacterial colonies. This way, each node adapts its strategy to
the dynamical characteristics of the network, maximizing its
payoff in terms of packet delivery and resource saving. Our
proposal does not need a central entity and does not require
unrealistically large number of node interactions to evaluate
the fitness. The numerical results show that our algorithm can
quickly find good strategies, more than 20 times faster than
the corresponding centralized algorithm. Further work will
modify the trust computation to reflect the change of strategies
at each PMP and will evaluate the adaptability to changing
conditions.

ACKNOWLEDGEMENTS

This work was partly supported by the Colombian Insti-
tute for science and Technology development, Colciencias,
Universidad Nueva Granada and Universidad de los Andes,
in Colombia, as well as the Spanish Government through
projects CONSOLIDER INGENIO 2010 CSD2007-00004
”ARES”, TSI2007-65393-C02-02 ”ITACA” and TSI2005-
07293-C02-01 ”SECONNET”, and by the Government of Cat-
alonia under grant 2005 SGR 01015 to consolidated research
groups.

REFERENCES

[1] Charles E. Perkins. Ad Hoc Networking. Addison-Wesley Professional,
1 2001.

[2] Konrad Wrona and Petri Mähönen. Analytical model of cooperation in
ad hoc networks. Telecommunication Systems, Volume 27:347 – 369,
2004.

[3] Marcela Mejia, Néstor Peña, José. L. Muñoz, and Oscar. Esparza. A
review of trust modeling in ad hoc networks. Internet Research, volume
19-1(1):88–104, 2009.



[4] Sergio Marti and Hector Garcia-Molina. Taxonomy of trust: categoriz-
ing p2p reputation systems. Comput. Netw., 50(4):472–484, 2006.

[5] Juan José Jaramillo and R. Srikant. Darwin: distributed and adaptive
reputation mechanism for wireless ad-hoc networks. In MobiCom
’07: Proceedings of the 13th annual ACM international conference on
Mobile computing and networking, pages 87–98, New York, NY, USA,
2007. ACM.

[6] Lu Yan and Stephen Hailes. Cooperative packet relaying model for
wireless ad hoc networks. In FOWANC ’08: Proceeding of the 1st ACM
international workshop on Foundations of wireless ad hoc and sensor
networking and computing, pages 93–100, New York, NY, USA, 2008.
ACM.

[7] M. Seredynski, P. Bouvry, and M.A. Klopotek. Modelling the evolution
of cooperative behavior in ad hoc networks using a game based
model. Computational Intelligence and Games, 2007. CIG 2007. IEEE
Symposium on, pages 96–103, April 2007.

[8] Enrique Alba and BernabÃ c© Dorronsoro. Cellular Genetic Algorithms
(Operations Research/Computer Science Interfaces Series). Springer, 1
edition, 6 2008.

[9] Enrique Alba and José M. Troya. A survey of parallel distributed genetic
algorithms. Complex., 4(4):31–52, 1999.

[10] Erick Cantpaz. A survey of parallel genetic algorithms. Calculateurs
Paralleles, 10, 1998.

[11] M. Nowostawski and R. Poli. Parallel genetic algorithm taxonomy.
Knowledge-Based Intelligent Information Engineering Systems, 1999.
Third International Conference, pages 88–92, Dec 1999.

[12] Enrique Alba and Bernabé Dorronsoro. Auto-adaptación en algoritmos
evolutivos celulares, un nuevo enfoque algoritmico. In II Congreso
Español sobre Metahurı́sticas, Algoritmos Evolutivos y Bioinspirados
(MAEB03), 2003.

[13] I. W. Marshall and C. Roadknight. Adaptive management of an active
service network. BT Technology Journal, 18(4):78–84, 2000.

[14] Jeremy Dale and Simon Park. Molecular Genetics of Bacteria. Wiley,
4 edition, 3 2004.

[15] H. Ishibuchi and N. Namikawa. Evolution of cooperative behavior in
the iterated prisoner’s dilemma under random pairing in game playing.
Evolutionary Computation, 2005. The 2005 IEEE Congress on, 3:2637–
2644 Vol. 3, Sept. 2005.


