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In nature, smooth shapes are extremely rare, in 
fact, quite exceptional. Mountains are not 
triangles and clouds are not spheres. 
 
Benoit Mandelbrot 
III Encuentro Interuniversitario de Complejidad 
Bogotá, 2008 

http://wallpapers.free-review.net/r?12








• The primary forms are not directly 
constructed, like straight lines, circles, 
triangles, etc. 

• … They are more like a set of procedures 
(algorithms) to rotate, shift, re-scale and/or 
distort an original shape. 

¿Another geometry? 
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A simple translation by (dx,dy) 
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A simple resizing by (a,b), with translation 
-if ab=1, preserves the area- 
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Shearing parallel to x 
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Rotation by an angle  



We can iterate a simple affine 
transformation: 
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xy    = [0 0; 1 0; 1 1; 0 1; 0 0]'; 

A     = [0.9 -0.1; 0.1 0.9]; 

b     = repmat([0.1; 0.0],1,5); 

for i = 1:100 

    plot(xy(1,:),xy(2,:)); hold on 

    xy = A*xy + b; 

end 

 





Four interesting (¿?) affine transformations in đ2 
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Nature’s geometry 

X=zeros(2,120000); 

X(:,1)=[0.5; 0.5]; 

A1 = [ 0.00  0.00;  0.00  0.16]; b1 = [0.0; 0.00]; 

A2 = [ 0.85  0.04; -0.04  0.85]; b2 = [0.0; 1.60]; 

A3 = [ 0.20 -0.26;  0.23  0.22]; b3 = [0.0; 1.60]; 

A4 = [-0.15  0.28;  0.26  0.24]; b4 = [0.0; 0.44]; 

for k=1:119999 

    r=rand; 

    if     r<.01, A = A1; b = b1; 

    elseif r<.86, A = A2; b = b2; 

    elseif r<.93, A = A3; b = b3; 

    else          A = A4; b = b4; 

    end 

    X(:,k+1) = A*X(:,k) + b; 

end 

scatter(X(1,:),X(2,:),2,'g') 

axis equal 

Starting with x = (0.5, 0.5): 
    plot(x) 
    with prob. 0.01, x  A1 x + b1; 
    with prob. 0.85, x  A2 x + b2; 
    with prob. 0.07, x  A3 x + b3; 
    with prob. 0.07, x  A4 x + b4; 
Repeat until we have enough dots 



X=zeros(2,120000); 

X(:,1)=[0.5; 0.5]; 

A1 = [ 0.195  -0.488;  0.344  0.443]; b1 = [0.4431; 0.2452];           

A2 = [ 0.462   0.414; -0.252  0.361]; b2 = [0.2511; 0.5692];  

A3 = [-0.637   0.000;  0.000  0.501]; b3 = [0.8562; 0.2512];   

A4 = [-0.035   0.070; -0.469  0.022]; b4 = [0.4884; 0.5069];  

A5 = [-0.058  -0.070;  0.453 -0.111]; b5 = [0.5976; 0.0969];  

for k=1:119999 

    r=rand; 

    if r<0.2,     A = A1; b = b1;           

    elseif r<0.4, A = A2; b = b2;           

    elseif r<0.6, A = A3; b = b3;           

    elseif r<0.8, A = A3; b = b3;           

    else          A = A5; b = b5;           

    end 

    X(:,k+1) = A*X(:,k) + b; 

end 

scatter(X(1,:),X(2,:),2,'k') 

axis equal 

Nature’s geometry 



X=zeros(2,120000); 

X(:,1)=[0.5; 0.5]; 

A1 = [ 0.387  0.430;  0.430 -0.387]; b1 = [0.2560; 0.5220]; 

A2 = [ 0.441 -0.091; -0.009 -0.322]; b2 = [0.4219; 0.5059]; 

A3 = [-0.468  0.020; -0.113  0.015]; b3 = [0.4000; 0.4000]; 

for k=1:119999 

    r=rand; 

    if r<.333,     A = A1; b = b1; 

    elseif r<.666, A = A2; b = b2; 

    else           A = A3; b = b3; 

    end 

    X(:,k+1) = A*X(:,k) + b; 

end 

scatter(X(1,:),X(2,:),2,'g') 

X=zeros(2,120000); 

X(:,1)=[0.5; 0.5]; 

A1 = [ 0.50  0.00;  0.00  0.75]; b1 = [0.25; 0.00]; 

A2 = [ 0.25 -0.20;  0.10  0.30]; b2 = [0.25; 0.50]; 

A3 = [ 0.25  0.20; -0.10  0.30]; b3 = [0.50; 0.40]; 

A4 = [ 0.20  0.00;  0.00  0.30]; b4 = [0.40; 0.55]; 

for k=1:119999 

    r=rand; 

    if r<0.25,     A = A1; b = b1; 

    elseif r<0.50, A = A2; b = b2; 

    elseif r<0.75, A = A3; b = b3; 

    else           A = A4; b = b4; 

    end 

    X(:,k+1) = A*X(:,k) + b; 

end 

scatter(X(1,:),X(2,:),2,'g') 

axis equal 



Homework # 3 
A. Spend no more than one hour of your time trying to modify the self-affine IFS of the 

left to generate the best romanescu broccoli you can  



Not only plants 

X=zeros(2,250000); 

X(:,1)=[0.5; 0.5]; 

A1 = [ 0.75  0.00;  0.00  0.75]; b1 = [0.125; 0.125]; 

A2 = [ 0.50 -0.50;  0.50  0.50]; b2 = [0.500; 0.000]; 

A3 = [ 0.25  0.00;  0.00  0.25]; b3 = [0.000; 0.750]; 

A4 = [ 0.25  0.00;  0.00  0.25]; b4 = [0.750; 0.750]; 

A5 = [ 0.25  0.00;  0.00  0.25]; b5 = [0.000; 0.000]; 

A6 = [ 0.25  0.00;  0.00  0.25]; b6 = [0.750; 0.000]; 

for k=1:249999 

    r=rand; 

    if r<0.1667,     A = A1; b = b1; 

    elseif r<0.3333, A = A2; b = b2; 

    elseif r<0.5,    A = A3; b = b3; 

    elseif r<0.6667, A = A4; b = b4; 

    elseif r<0.8333, A = A5; b = b5; 

    else             A = A6; b = b6; 

    end 

    X(:,k+1) = A*X(:,k) + b; 

end 

scatter(X(1,:),X(2,:),2,'k') 

axis equal 

Symmetry and growth 



¿      ? 



L-Systems 
Aristid Lindenmayer, 1925 - 1989 

In many growth processes of living organisms, 
especially of plants, regularly repeated appearances 
of certain  multicellular structures are readily 
noticeable.... In the case of a compound leaf, for 
instance, some of the lobes (or leaflets), which are 
parts of a leaf at an advanced stage, have the same 
shape as the whole leaf has at an earlier stage…. 
Organic form itself is found, mathematically 
speaking, to be a function of time.... We might call 
the form of an organism an event in space-time, and 
not merely a configuration in space… The idea of the 
form implicitly contains also the history of such a 
form. 



L-Systems: Formal grammar and rewriting 

• Chomsky’s formal grammar: Rewriting to 
describe the syntactic features of natural 
languages (1950’s) 

• Backus and Naur: Rewriting-based notation 
provides a formal definition of computer 
programming languages (algol, 1960’s) 

• The recognition of the equivalence started a 
period of fascination with syntax, grammars and 
their application to computer science (1970’s) 



• Rewriting: define complex objects by successively replacing 
parts of a simple initial object using a set of rewriting rules. 

• The classic example is the snowflake curve proposed in 1905 
by von Koch, which Mandelbrot restates as follows: 
– One begins with two shapes, an initiator and a generator. The latter is 

an oriented broken line made up of N equal sides of length r. Thus 
each stage of the construction begins with a broken line and consists 
in replacing each straight interval with a copy of the generator, 
reduced and displaced so as to have the same end points as those of 
the interval being replaced. 

L-Systems: Rewriting 

Initiator 

Generator 



http://en.wikipedia.org/wiki/File:Kochsim.gif


• A tree grows from a seed : How can new cells be generated 
from old cells? 

• The seed cell is known as an axiom 

• The instructions of how to grow new cells are known as 
production rules 

• For example, 

Axiom : B 

Rules : BF-B+B, FFF 

L-Systems: Rewriting 

Depth String 
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L-Systems: Rewriting 





function Tortuga(delta,Axioma) 

    x0 = 0; y0 = 0; distancia = 10; angulo = 0; 

    i = 1; 

    clf 

    while Axioma(i)~='.' 

        switch Axioma(i) 

            case 'f' 

                x1 = x0 + distancia*cos(angulo); 

                y1 = y0 + distancia*sin(angulo); 

                plot([x0 x1],[y0 y1]) 

                hold on 

                x0 = x1; y0 = y1; 

            case 'l' 

                angulo = angulo + delta; 

            case 'r' 

                angulo = angulo - delta; 

        end 

        i = i+1; 

    end 

function SistemaCasiL(delta,Generador,Axioma,n) 

    while n>1 

        buffer = ''; 

        for i=1:length(Axioma) 

            if Axioma(i) == 'f' 

                buffer = [buffer Generador]; 

            else 

                buffer = [buffer Axioma(i)]; 

            end 

        end 

        Axioma = buffer; 

        n = n-1; 

    end 

    Axioma = [Axioma '.']; 

    Tortuga(delta,Axioma) 

Quasi-L System 

function secuencia(delta,Generador,Axioma) 

    for n=1:5 

        SistemaCasiL(delta,Generador,Axioma,n); 

        drawnow 

        pause(1) 

    end 



% Copo de nieve de Von Koch 

delta = pi/3; 

Generador = 'flfrrflf'; 

Axioma = 'f'; 

% Crecimiento de moho 

delta = pi/2; 

Generador = 'flfrfrflf'; 

Axioma = 'f'; 



% Otro crecimiento cristalino 

delta = pi/2; 

Generador = 'flfrfrflf'; 

Axioma = 'flflflfl'; 



A1, A2,..., Ak - axioms and previously proved theorems 

Formal proof of a sentence P is a sequence of statements 

 S1, S2,..., Sn 

where: 

1.    Sn is P and one of the following holds: 

2a.  Si is one of A1, A2,..., Ak  

          or 

2b.  Si follows from the previous statements by a valid argument using the 

       rules of reasoning (grammar rules) 

On axioms, grammar rules and theorems 

This is everything about mathematics 

Math is 

simply a 

(formal) 

language 

Example: Let (, F , P) be a probability space.  

Axioms: (1) P() = 1 
(2) If A F , P(A) ≥ 0 

(3) If A,B F,  and AB=, then P(AB) = P(A) + P(B).  
Theorem: If A  B, P(A) ≤ P(B).  

Proof: B = A(BAC)  

           P(B) = P(A) + P(BAC) 

           P(BAC) ≥ 0 

           P(B) ≥ P(A). 



Homework # 3 
B. A formal system consists of the symbols M, I and U, along with some grammar rules to 

contruct strings from previously known ones. 

 

 Axiom:              MI 

 Grammar rules: 1. If xI, then xIU 

                           2. If Mx, then Mxx 

                            3. if xIIIy then xUy 

                           4. if xUUy then xy 

 Homework:       Prove MU, if it is possible 

(where x and y is any sequence –even 

an empty sequence – of symbols M, I 

and/or U) 

Douglas R. Hofstadter,  

“Gödel, Escher, Bach: an Eternel Golden Braid”,  

Basic Books, 1979 
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2. If Mx, then Mxx 

3. if xIIIy then xUy 

4. if xUUy then xy 
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1 2 

1. If xI, then xIU 

2. If Mx, then Mxx 

3. if xIIIy then xUy 

4. if xUUy then xy 



% Otro crecimiento cristalino 

delta = pi/2; 

Generador = 'flfrfrflf'; 

Axioma = 'flflflfl'; 



Yet another 
algorithm to 
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 same fractal 
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The Cantor Set 
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How many intervals are there in the Cantor set? 

At the nth step, we remove 2n intervals, each of length 3-(n+1) 
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Total length of removed intervals: 

Can we count the number of isolated points in the Cantor set? 

Yes, they are the limits of the intervals …. Sure? 



The Cantor Set 
Those isolated points are not only the end points of middle third intervals. For 
instance, many points (like ¼) are never removed from the Cantor set, despite 
they are not the end points of middle third intervals: 
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1/4 61/243 20/81 62/243 7/27 1/4 61/243 20/81 62/243 7/27 



The Cantor Set 

0 

Indeed, let us represent the end points in base 3: 

1=0.23 

_ 

2/3 = 0.23 1/3 = 0.023 
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2/9 = 0.023 8/9 = 0.223 1/9 = 0.0023 

_ 
7/9 = 0.2023 
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Which points do belong to the Cantor set? 
 

The Cantor set consists of those points c  [0, 1] that have no 1’s in their base-3 expansion 
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How many points are there in the Cantor set? 
 

To answer this 
question it is 
interesting to 
learn how to 
count: 

• Two sets X and Y are said to have the same cardinality (number of elements) if there is 
an invertible mapping that pairs each element x  X with precisely one y  Y: one-to-
one correspondence. 

• If a set X can be put into one-to-one correspondence with the natural numbers, N = 
{1,2,3,…}, X is said to be countable. 

• For instance, the even natural numbers, E = {2,4,6,…}, is countable through the 
invertible mapping  f(n) = 2n. Hence, there are exactly as many even numbers as natural 
numbers, although we might think there would be only half as many, because odd 
numbers are missing.  

 



• Equivalently, a set X is said to be countable if it can be written as a list                  
X = {x1, x2, x3, … } with every x  X appearing somewhere in the list, i.e., given 
any  x  X, there is some finite  n  N such that xn = x. 

• A convenient way to exhibit such a list is to give an algorithm that systematically 
associates the index n with the element xn  X. 

• For example: Are the integers Z = {…,-3,-2,-1,0,1,2,3,…} countable? 
– Find a clever way to start: it would not be helpful to go one way from zero and, after finisihing in 

that direction, come to zero again to begin on the other way: we will never reach the end of the 
first half. 

– This is a better way to go: Z = {z1 = 0, z2 = 1, z3 = -1, z4 = 2, z5 = -2, z6 = 3, z7 = -3, …} 

– Since every particular integer will appear eventually, integers are countable: There are as many 
integers as naturals, not twice  

– Indeed, the position of the integer z is 

 

• Show that the  positive rational numbers are countable 
– Wrong way to go: Q = {1/1, 1/2, 1/3, 1/4, 1/5, … }. We will never finish the 1/n’s, so numbers 

like 2/3 will never be counted. 

– Any suggestion? 

– There are as many rational numbers as natural numbers! 

How many elements are there in countable sets? 
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How many real numbers are there? 

• Cantor showed that real numbers are uncountable: 
– By contradiction. If they are countable, we could list the numbers in the 

interval [0, 1] as a set {x1, x2, x3, x4, …}. 

– Let us write these numbers in binary form: 
• x1 = 0 . x11x12x13x14… 

• x2 = 0 . x21x22x23x24… 

• x3 = 0 . x31x32x33x34… 

• … 

 where xij is the jth binary digit of the ith real number 

– The contradiction is obtained by finding a number r  [0, 1] that is not in 
the list. 
• The first digit of r is 1-x11 

• The second digit 1-x22 

• … 

• The ith digit of r is 1-xii. 

– Then r is not in the list because it differs from each number in the list at 
least by one binary place. 

• The real numbers are not countable: There are MORE real numbers 
than natural numbers! Some infinities are bigger than others! 

 



Cantor´s Transinfinities 
•        is the smallest infinite: the number 

of natural numbers  
– Hilbert´s Hotel 
–   

•        is the cardinality of the set of 
subsets of countable sets, 2 

0 0 0 0 0 0
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Continuum Hypothesis: 

 

is the smallest cardinality bigger than   
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How many points are there in the Cantor set? 
Why Cantor’s mental health became weak… 

 • The Cantor set consists of those points c  [0, 1] that have no 1’s in their 
base-3 expansion, so they only have 0’s and 2’s. 

• By changing each 2 in the base-3 expansion of the elements of the Cantor 
set by a 1, we get all the binary numbers in the interval [0, 1], expressed in 
binary. 

• This is just a one-to-one correspondence between the Cantor set and the 
real interval [0, 1]! 

• We just found a set of ISOLATED POINTS in the interval [0, 1] that have as 
many elements as the whole CONTINUOUS interval! 

 
 

– … Obviously, Cantor went crazy! It was 1900, Mandelbrot was not there 
and fractals were “mathematical monsters” 

 

• Fractals present many paradoxes like this 



Some properties of the Cantor set 

• The Cantor set is self-similar: contains copies of itself at 
infinitely many scales. 

 
  
• The Cantor set has a fine structure: contains detail at 

arbitrarily small scales. 
• Despite its intricate detailed structure, the Cantor set is 

easily defined through a simple recursive procedure. 
• The geometry of the Cantor set is not easily described in 

classical terms: it is not the set of points that solve any 
equation, for example. 

• Although the Cantor set has an uncountably infinite 
number of points, its length is zero. 
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Basically, ignores details smaller than an increment  

and then considers what happen when   0. 

How to measure an arc length 



For example, the Koch curve 
L=4/3 

0 

1/(23) 

0 1/2 1 

L=1 

0 1/2 1 

0 

1/(23) 

0 1/2 1 

L=(4/3)2 

0 

1/(23) 

0 1/2 1 

L=(4/3)3 

0 

1/(23) 

0 1/2 1 

L=(4/3)4 

0 

1/(23) 

0 1/2 1 

L=(4/3)5 

The length of Koch curve is   
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The area under Koch curve is   
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This figure has an infinite perimeter, 

but an area of only                m2  ! 5 - 3 
5 



The length of the 

circulatory system is 80 

millions meters! 

The surface of human 

brain is 6 square 

meters! 

The length of lung 

alveoli is 350000 

meters! 

Nature’s frugality 

requires fractal 

structures 



This was the big popular inspiration 
• Benoit Mandelbrot, “How 

long is the coast of 
britain?”, Science, Vol. 156, 
No. 3775. (May 5, 1967), 
pp. 636-638 

• “Why this text came to be written? 
It was intended to be a ‘‘Trojan’’ 
horse allowing a bit of 
mathematical esoterica to 
‘‘infiltrate’’ surreptitiously hence 
near-painlessly, the investigation 
of the messiness of raw nature. 
Today, it means that everyone 
knows how to answer the question 
raised in this paper's title. And the 
notion of fractal dimension is very 
widely known and used.” 



How long is the coast of Britain? 

Unit = 200 km,  
Length = 2400 km 

Unit = 100 km,  
Length = 2800 km 

Unit = 50 km,  
Length = 3400 km 

1( ) DL Unit M Unit  



Dimensions 

• Dimension 0  {0} 

 

• Dimension 1   (x) 

 

• Dimension 2   (x,y) 

 

• Dimension 3   (x,y,z) 

 
 

• Dimension 4  (w,x,y,z)               Tesseract  

 (Shadow of a 4-dimensional hypercube) 

Informally, the dimension of an object is the minimum 
number of coordinates needed to specify each point within it 

Measure : Number of points 
 
 
Measure : Length 
 
 
Measure : Area 
 
 
Measure : Volume 



Tesseract 

http://en.wikipedia.org/wiki/File:8-cell-simple.gif


Self-similar fractals 

0 3/92/9 5/94/9 7/96/9 18/91/90 3/92/9 5/94/9 7/96/9 18/91/9

The Cantor set is composed of 
ISOLATED POINTS in the 
interval [0, 1], but it has as 
many elements as the whole 
CONTINUOUS interval! 

0 3/9 2/9 5/9 4/9 7/9 6/9 1 8/9 1/9 0 3/9 2/9 5/9 4/9 7/9 6/9 1 8/9 1/9 

The area under the Von 
Koch curve is only (3)/20 
m2, but it has an infinite 
length 

The dimension of the Cantor set cannot be 1, but should be greater than zero, 
since its length is zero and its number of points is uncountable infinity 

The dimension of the Von Koch curve cannot be 2, but should be greater than one, 
since its area is zero and its length is infinity  



(One) Concept of Dimension 
(through self-similarity) 

r=1/3, N=3, D=1 

r=1/3, N=9, D=2 

r=1/3, N=27, D=3 

r=1/2, N=2, D=1 

r=1/2, N=4, D=2 

r=1/2, N=8, D=3 

N = r -D    D = log(N) / log(1/r) 



Dimension of self-similar fractal figures 

N   =  4, 
r    =  1/3, 
D   =  log(4)/log(3) = 1.26 

N  =  8, 
r   =  1/4, 
D  =  log(8)/log(4) = 1.5 

N   =  3, 
r    =  1/2, 
D   =  log(3)/log(2) = 1.58 

N   =  2, 
r    =  1/3, 
D   =  log(2)/log(3) = 0.63 



Cantor set : 0.631 

Julia set(1/4) : 1.081 V
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Cantor set in 3D : 1.893 

Peano curve : 2 

Moore curve : 2 

Z-order curve : 2 

Lorenz atractor : 2.06 
Menger sponge : 2.727 

Dimension of some fractals 

http://upload.wikimedia.org/wikipedia/commons/5/56/Cantor_set_in_seven_iterations.svg
http://upload.wikimedia.org/wikipedia/commons/c/c5/Julia_z2+0,25.png
http://upload.wikimedia.org/wikipedia/commons/5/5d/Koch_curve.svg
http://upload.wikimedia.org/wikipedia/commons/0/0b/Cantor3D3.png
http://upload.wikimedia.org/wikipedia/commons/5/58/Peano_curve.png
http://upload.wikimedia.org/wikipedia/commons/8/86/Moore-curve-stages-1-through-4.svg
http://upload.wikimedia.org/wikipedia/commons/a/ad/Z-order_curve.png
http://upload.wikimedia.org/wikipedia/commons/0/0e/Lorenz_attractor.png
http://upload.wikimedia.org/wikipedia/commons/3/3b/Menger.png


Dimension of some natural fractals 
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Coastline of  
Norway : 1.52 

Diffusion limited  
aggregation : 1.7 Galaxy clusters : 2 

Cauliflower : 2.33 Crumpled paper : 2.5 Lichtenberg lamp : 2.5 Broccoli : 2.66 

Surface of 
human brain : 2.79 Lung alveoli : 2.97 

How can these 
dimensions be 
measured or computed 
if the objects are not 
exactly self-similar? 

http://upload.wikimedia.org/wikipedia/commons/e/e5/Norway_municipalities.png
http://upload.wikimedia.org/wikipedia/commons/e/e7/Agregation_limitee_par_diffusion.png
http://upload.wikimedia.org/wikipedia/commons/9/90/Abell_1835_Hubble.jpg
http://upload.wikimedia.org/wikipedia/commons/7/78/Blumenkohl-1.jpg
http://upload.wikimedia.org/wikipedia/commons/6/6a/Paperball.png
http://upload.wikimedia.org/wikipedia/commons/e/e4/PlanePair2.jpg
http://upload.wikimedia.org/wikipedia/commons/5/53/Broccoli_DSC00862.png
http://upload.wikimedia.org/wikipedia/commons/a/a7/Cerebellum_NIH.png
http://upload.wikimedia.org/wikipedia/commons/7/77/Thorax_Lung_3d_(2).jpg


The concept: Hausdorff dimension 

• Previous definitions of  

– Euclidean dimension 

– self-similar dimension 

• … are simply versions of the true “fractal 
dimension” 

–Hausdorff dimension 

• To begin with, let us define the Hausdorff 
measure 



 -cover of a set 
• If U is any non-empty subset of the n-

dimensional Euclidian space, Rn, … 

• … the diameter of U is defined as 

 

• If {Ui} is a countable collection of sets of 

diameter at most  that cover F, i.e., 

 

 

• … with 0  |Ui|   for each i, … 

• … we say that {Ui} is a  -cover of F 

 sup : ,U x y x y U  

1

i

i

F U








1-cover of the Koch curve 

N(1)=1 



½ - cover of the Koch curve 

N(½)=3 



¼ - cover of the Koch curve 

N(¼)=5 



1/7 - cover of the Koch curve 

N(1/7)=11 



1/12 - cover of the Koch curve 

N(1/12)=22 



 - cover of the Koch curve,  = 1/88 

N(1/88)=244 



Hausdorff measure 

• Suppose F is a subset of Rn, and s is a non-

negative number. For any >0 we define 

 

 

• As  decreases, the class of permissible covers 

of F is reduced, so the infimum increases and, 

so, approaches a limit as 0:  
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 = 1/7, s = 1 
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 H
1(Von Koch) H

2(Von Koch) 

1 1 1 

1/2 3/2 3/4 

1/4 5/4 5/16 

1/7 11/7 11/49 

1/12 22/12 22/144 

1/88 244/88 244/7744 

0  0 

0
( ) lim ( )s sH F H F




The Hausdorff measure 

Can (and use to) be 0 or  
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Towards Hausdorff dimension 

• Since 

 

 

• for any <1, Hd
s(F) does not increase with s. Consequently  

 

 

 does not increase with s.  

• Furthermore, since 

 

 

•  the infimum must also obey this relation 

 

• So, in the limit, 

  if Hs(F)<, Ht(F)=0  t>s 
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Hausdorff dimension 

 

s 

Hs(F) 

0 

dimH(F)=s* 

   dim ( ) inf 0 : ( ) 0 sup 0 : ( )s s

H F s H F s H F      

Does not say anything about Hs*(F). It could be 0, , or any intermediate number, but it is 
normally too hard to compute. Many (MANY) recent math papers still address the 
Hausdorff measure of the Cantor set, which came up to be Hs*(C ) = 1.  



Box dimension 

• Cover the set with boxes of size  

 

 

 
 

• As with smooth lines, surfaces and solid 
objects, one can expect the dimension of a set 
to equals the exponent d in the power law  
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• Find the box dimension of the Cantor set 

 

 
– Let Sn be the set at the nth step of Cantor set construction.  

– For each n, the 2n intervals of size 3-n of Sn cover the Cantor set. 

– Using  = 3-n, we need N()=2n. 

– As n, 0 

–   

Box dimension 
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http://upload.wikimedia.org/wikipedia/commons/5/56/Cantor_set_in_seven_iterations.svg


Finding the box-dimension of a 2D fractal set 
% Carga y despliega la imagen original 

p = imread('Fractal_Broccoli.jpg'); 

figure(1); imshow(p) 

% detecta los bordes sobre la imagen B&N 

p  = edge(double(im2bw(p,graythresh(p)))); 

figure(2); imshow(p) 

eps = 0.04, N(eps) = 369 eps = 0.02, N(eps) = 1114 eps = 0.0133, N(eps) = 2055

eps = 0.01, N(eps) = 3091 eps = 0.008, N(eps) = 4082 eps = 0.0067, N(eps) = 5430

[Nx, Ny] = size(p);  % Tamaño de la imagen 

nBloques = [25 50 75 100 125 150]'; % Número de bloques 

NB = length(nBloques); 

tabla = zeros(NB,1); 

for fg = 1:NB 

    tamanoBloque_x = floor(Nx./nBloques(fg)); 

    tamanoBloque_y = floor(Ny./nBloques(fg)); 

    ocupado = zeros(nBloques(fg),nBloques(fg)); 

    for i = 1:nBloques(fg) 

        xi = (i-1)*tamanoBloque_x + 1; 

        xf   = i*tamanoBloque_x; 

        for j = 1:nBloques(fg) 

            yi = (j-1)*tamanoBloque_y + 1; 

            yf   = j*tamanoBloque_y; 

            bloque = p(xi:xf,yi:yf); 

            ocupado(i,j) = any(bloque(:)); 

        end 

    end 

    tabla(fg) = nnz(ocupado); 

    figure(3); subplot(2,3,fg); imshow(ocupado); 

end 



x = log(nBloques); 

y = log(tabla); 

p = polyfit(x,y,1); 

y1 = polyval(p,x); 

figure(4); plot(x,y1,'k-',x,y,'ro') 

Dimension_de_Hausdorff = p(1) 

Dimension_de_Hausdorff = 1.4921 

Finding the box-dimension of a 2D fractal set 
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