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ABSTRACT 

 

Cognitive agents have the ability to perceive their environment and 

act on it according to models of reality built through memory, 

intelligence and language. Interacting cognitive agents interchange 
information about their models in order to build a collective 

knowledge of their reality (social learning). In this paper we use this 

distributed cognitive system paradigm to solve a segmentation 

problem in image processing from the complex systems engineering 
approach. We build a cognitive cellular automata where each pixel in 

the image is a cognitive agent. Social learning is achieved by 

stigmergic and direct communication among agents. Our results 

outperform typical segmentation methodologies for granular material. 
Our social cognitive learning metaphor exemplifies a complex 

systems engineering approach for more general applications. 

 

Keywords: social learning, image processing, cellular automata, 
granular material, political formation, nature/nurture. 

 

 

1.  INTRODUCTION 
 

In recent decades, there has been an enriching feedback between 

Science and Engineering. On the one hand, engineering design 

processes have been inspired by biological, physical, psychological, 
ecological and sociological phenomena (among many others) to solve 

computationally difficult problems [1]. On the other hand, engineering 

experimentation with these inspired processes has shed some light on 

the explanation of the corresponding scientific phenomena [2]. Here 
we explore a potential similar synergistic relationship between 

neuropsychology, sociology and complex systems engineering, 

related to the design of distributed cognitive dynamic systems. 

 
Psychology and neurology study the cognitive abilities of human 

beings, that is, the ability of man to perceive his environment and act 

on it according to mental models that arise from perception/action 

cycles mediated by memory, attention, intelligence and language [3]. 
Sociology studies the collective phenomena produced by human 

beings, that is, the behavior of human beings when they are living 

together in a shared habitat, giving rise to culture and history [4]. The 

complexity sciences study systems that exhibit emergency and self-
organization, that is, systems composed of many parts that, when 

interacting, give rise to new macroscopic qualities of the system in the 

form of spontaneous structures, more as an effect of the interactions 
than an effect of the functional contribution of the parts [5]. There is 

no doubt, then, that neuropsychology, sociology and the engineering 

of complex systems have many pending dialogues. 

 
Sociological phenomena arise from the interaction of human beings. 

Arguably, these phenomena are emergent characteristics produced by 

self-organization through cognitive interactions [6]. This idea can 
inspire engineering procedures for complex systems. Our purpose in 

this paper is to present a basic example of a distributed dynamic 

cognitive systems design, and to discuss it in the context of 

neuropsychology and sociology, as a social learning process among 
cognitive agents. 

 

The engineering problem in question corresponds to the segmentation 

of a noisy pavement image into two classes of regions, asphalt and 
gravel (Figure 1) [7]. The social metaphor is the formation of liberal 

and conservative opinions as a society evolves from childhood to 

maturity. Each pixel is classified as gravel or asphalt like each 

individual in the society becomes liberal or conservative. Each pixel 
begins with an initial gray level, so that dark pixels are likely to 

become asphalt and light pixels are likely to become gravel. Similarly, 

there could be natural genetic conditions that make children likely to 

become liberals or conservatives. However, the local environment 
also determines how some dark pixels could belong to gravel areas 

and light pixels to asphalt regions, as family values, education and 

friends help to determine political tendencies of a teenager. Finally, a 

careful model based classification should help to refine the final 
decision of whether a pixel should be classified as gravel or asphalt, 

as mature citizens use more rational criteria and discussions with 

fellow citizens to decide a particular behavior. 

  
Figure 1. (a) Original pavement image. (b) Asphalt and gravel 

segmentation 

 

This paper use the metaphor of political opinion formation to classify 

pixels in pavement images. Initially, the pixels are dark or light 
indicating some “childhood tendencies”, although they are not very 

clear about their positions. Then, “teenager pixels” tend to get closer 

to similar pixels and to take distance from different pixels just by 

imitation of their closer friends, without too much communications 
nor rationalization. Finally, “mature pixels” build a model of their 

environment and interchange information among neighbor pixels in 

order to make a rational decision of its own classification as asphalt or 

gravel. We believe this process is close to that of liberal or 
conservative opinion formation in a society as its members grow 

nurturing from nature tendencies. 

 

The paper is organized as follows. After this brief introduction, a first 
social learning approach to segmentation is presented in section 2. 

This approach leads to the cognitive cellular automata model 

presented in section 3. This model works in two phases:  a “teenager”  
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cellular automata in which each pixel tries to get closer to similar 
neighbor pixels and move away from different neighbor pixels (as 

presented in section 4), and a “mature” cellular automata where pixels 

interchange knowledge to decide their own class (as presented in 

section 5). Section 6 presents some results and section 7 conclude the 
paper. 

 

2.  SOCIAL COGNITIVE APPROACH 

 
The gravel/asphalt image segmentation is not an easy problem. We 

built a simple drawing program to allow a human being to segment an 

image manually, so several graduate students tried to do it. The results 

are uncertain in the sense that different students obtained very 
different segmentations for the same image, and even the same student 

obtained different segmentations at different times for the same image. 

Anyway, this manual process, depicted in Figure 2, gives better results 

than common automatic segmentation procedures. 

 
Figure 2. Manual segmentation of the images 

 

We consider the graduate student is a cognitive system: She perceives 

the color image, IC, and uses all her relevant knowledge acquired 
during her undergraduate studies in engineering and all her previous 

experience with similar problems in order to obtain a binary image, IB, 

as a transformation of the original color image, IB=T(IC). This mental 

binary model reflects her interpretation of the original color image, 
generating a sequence of actions to capture the mental image on the 

computer screen through the drawing program. This perception/action 

cycle, mediated by a mental model of reality, is what we call the 

cognitive process. The notorious differences among segmentations of 
the same image by different students show that the mental process 

through which action is decided from perception through intelligence, 

memory and attention can be very different from one student to 

another, although all of them are good segmentations (Figure 3). 

 
Figure 3. Different students produce different segmentations 

 

Neuropsychology have taught us a lot about this internal decision 

process that controls the perception-action cycle [8]. The great 
neuroscientist J.Fuster considers it as a flow of information between 

the cognitive agent and its environment, from sensory organs to motor 

effectors that change the environment, which leads to new perceptions 

and new actions, until some goal is achieved [9]. Dr. Fuster finds that 
the perception/action cycle is physically represented by “cognits” 

(subnetworks of cortical neurons that are constructed during Hebbian 

learning, forming a hierarchical structure of 

perception/memory/action) [10]. This fundamental idea has inspired 
many engineers, as formalized in the work of Dr. Simon Haykin [11], 

to build the Theory of Dynamic Cognitive Systems. It uses statistical 

signal processing, stochastic control, information theory, statistical 

learning and game theory to simulate the cognitive abilities of the 
human being (perception, memory, attention, intelligence, language, 

action), according to neuroscience. 

 

The fact that several students obtain very different segmentations for 
the same color image can be attributed to different reasons. For 

example, at the most basic perception, some students have better 

vision than others. More psychologically, different aspects of the 

image can be interesting to focus attention, so the student concentrates 
on some visual stimuli while ignores others (e.g., those more 

interested in plastic arts are more careful delineating the gravel). In 

the action part of the cycle, some students have better fine motor skill 

than others. The mood of the students also has a great influence. 
However, if they work on the images segmented by other students, the 

results tend to converge on a much more satisfying segmented image. 

The process is depicted in Figure 4. This leads us to the second theme 

of our approach: social learning. 

 
Figure 4. Social interaction for better segmentation 

 
First, student 1 applies her own transformation T1 to the original image 

IC and obtains the first segmented image, IB1. This segmented image 

is given to student 2, along with the original image IC, in order for her 

to apply her own transformation T2 and obtain the second estimation 
of the segmented image, IB2. This process is repeated with several 

students, each generating a new segmented image form the original 

image and the segmented image of the previous student. At each 

iteration, the students not only add minute details, but also shrink or 
stretch some gravel, joint different gravels in a bigger one, separate a 

single gravel into two smaller ones, etc. Many times, they reverse the 

changes made on previous iterations by other students. Although there 

is not a final consensus on which is the correct segmentation, each 
iteration leads to a more acceptable segmentation, so students get more 

satisfied each time, as shown in the sequence of iterations of Figure 5. 
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Figure 5. Segmentation refinement through social learning 

 

Social psychology have taught us a lot about this social learning 

process that controls the distributed consensus among rational agents 

[12]. Recently, this kind of processes have attracted research interest 
in engineering for distributed estimation in sensor networks, 

consensus algorithms in robotic networks, distributed machine 

learning, synchronization in mobile ad hoc networks, cooperation 

emergence in cognitive radio networks, etc. [13] In particular, the 
topic of opinion dynamics over social networks, where agents can 

communicate only with a local group of agents, but beliefs are 

propagated through the network, is gaining more importance for its 

potential effects (good or bad) on democracy [14]. In our case, each 
student weights its own opinion on the correct segmentation with that 

of the previous student, which brings a summary of the opinions of all 

previous students. Presumably, the nth student builds the following 

estimation: 
 

IBn = Tn(IC; IBn-1) = IBn-1 + An(Tn(IC) - IBn-1) 
 

where An is a matrix of 0’s and 1’s, the same size as the image, 

choosing for each pixel her own independent classification, Tn(IC), or 

that of the previous estimation, IBn-1. Consensus is achieved if An tends 
to a zero matrix as n increases [15]. In our case, most students reach a 

zero matrix after a few iterations, but some of them keep making very 

small changes in conflictive regions of the image (although most 

entries of their matrices reaches the value zero). 
In this paper we explore how social learning among distributed 

cognitive agents can lead to an acceptable solution to the difficult 

problem of gravel/asphalt segmentation in pavement images. Instead 
of human cognitive agents perceiving the image and acting on it, we 

consider each pixel in the image as a cell in a cellular automata that 

becomes the cognitive agent in the distributed learning system.  

 

3. THE COGNITIVE AGENT AND ITS ENVIRONMENT 

 

The agent is the pixel, a cell in a cellular automata, which can perceive 

and act on a small neighborhood of the image, an array of 3131 pixels 
around it.  Each element of the array (each pixel) can take a particular 

gray level value between 0 and 255. A pixel with a zero value is black, 
a pixel with a value 255 is white and other values correspond to 

intermediate gray levels between black and white. The cell agent 

compute a bit according to its 3131 neighborhood, so that a new IB 
image is built, in the same domain of IG but with co-domain ℤ2 = {0, 

1}, where the pixels in zero state correspond to asphalt and the pixels 
in state 1 correspond to gravel. 

The agents have simple perception/action capabilities: They can 

perceive the gray value of each pixel in its 3131 neighborhood and 
they can change their own gray value.  

In order to decide what action to take, we consider the whole image as 

a society that evolves with time according to local social interactions 
among the members. A pixel being asphalt o gravel is like a person 

being liberal or conservative. In a first stage, the agents are not very 

clear about their positions, but they like to get closer to similar agents 

and to take distance from different agents, without too much 
communications nor rationalization, just by imitation of their closer 

friends. This way, they form a segregated society of teenagers with 

many tribes in a continuum of political positions, which are easy to 

discretize in a number of groups with some liberal or conservative 
tendencies.  

In a second stage the agents get more rational (more mature?) and 

polarize the society into two types of pixels according to a more 

elaborated procedure: They communicate among them and evaluate 
the maximum-a-posteriori probability of being part of one group or 

another according to their perceptions, the communication with 

neighbor agents, their experience as teenagers, and their own believes. 

For this second stage, those agent that did make up their minds early 
in time become references for other doubtful agents in the rational 

stage.  

 

4. A SOCIETY OF TEENAGERS 
 

In the first stage, each agent considers the range of gray values within 

its neighborhood. If all of them are very similar, the agents moves to 
the average, wanting to belong. If there are significant differences, 

however, they timidly moves toward those a little bit closer to them. 

As this process is repeated in a cellular automata of local interactions, 

different tribes are formed. The algorithm is as follows. 

Given the gray image in the neighborhood of an agent, IG, it can 

compute the maximum, the minimum, the average and the range of 

the gray levels: 

( , )
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where (x,y) runs over all pixels in its neighborhood. The quantity r 
talks of the homogeneity (low r) or heterogeneity (high r) of the ideas 

in the neighborhood. If it is low, the agent wants to belong and changes 

its gray level closer to the mean: 

( ) ( ) (1 )G GI x r I x r       

The lower r, the closer the agent gets to the mean in a single step. If r 
is high, there are different ideas in the neighborhood and the agents 

gets closer to the people that enforce its own ideas: 
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The higher r, the closer the agent gets to the corresponding local 
extreme in a single step. Figure 6 shows a sequence of interactions of 

this cellular automata in a profile of pixels. Sharp transitions are 

emphasized and small transitions are smoothed out, discriminating 

among local peaks and valleys of gray intensity, as local tribes for 
teenagers to hang out with.  

 

Figure 6. Iteration of the simple cellular automata "Look like my 

group and differentiate myself from other groups" 

 

Figure 7 shows an image and the result after the initial “teenagers” 

cellular automata. Conservative agents are clearly defined as deep 

dark pixels but there is a huge range of liberal agents that go from dark 

to light distributed in more or less irregular groups.  

 

Figure 7. Results after the initial "teenagers" cellular automata 

 
To help them take a decision, we use local Otsu thresholding, add 

regional maxima and then apply simple image opening. The centers 

of dilated local maxima of the distance to zero transform shows 

regions of liberal concentration, true gravel. We chose circles around 

those points with the distance to nearest zero as the radio, and make 

those circles grow over the binarized image in order to determine true 

gravel regions. Similarly, we use the complements to determine true 

asphalt regions. The rest of the image are those agents that did not take 
a final decision during its youth, so they will make up their minds at a 

mature age, in the next stage of the society. 

 

Figure 8. Classification of the pixels in three states 

 

5. A Society of mature agents 

 

A mature agent recognizes that his own class is a matter of 

probabilities. Indeed, for a given image processed in the teenager 

society, it is easy to estimate the gray level distribution for each class 

of pixel. Figure 9 shows the distribution corresponding to Figure 8. 

 

Figure 9. Global distribution of the gray level for each class of pixels 
 

Figure 9 also shows that its own gray level is not enough criteria for 

an agent to decide its class, so it needs to develop better cognitive 

capabilities: 

Perception: Each agent is capable of perceiving the state of each pixel 

in its 3131 neighborhood. 

Attention: Among this 961 observed values, each agent pays more 

attention to closer data as it computes a 21-dim vector of features: its 

own gray level, the mean, standard deviation, maximum and minimum 

in a 33 neighborhood, the mean, standard deviation, maximum and 

minimum in a 77 neighborhood, the mean, standard deviation, 

maximum and minimum in a 1515 neighborhood, and the mean, 

standard deviation, maximum and minimum in a 3131 
neighborhood. These features of the neighborhood form a vector 

dℝ17, which becomes the state of the agent, as it represents the 
perceived and processed information. However, since this data is 

highly redundant, each agent extracts the three principal components, 
giving a 3-dimensional state vector (Figure 10). 

 

Figure 10. Three principal components of the 21-dim feature vector 

 

Intelligence: Besides being able to compute its vector state form the 

perceived pixel values, the agent keeps a model of the world to help it 
understand its perception and decide how to act in its world. The world 

is interpreted as a mixture of Gaussians, where the state d obey to one 

of two different Gaussian distributions, one for asphalt pixels with 

mean vector a and covariance matrix a, and another one for gravel 

pixels with mean vector g and covariance matrix g. The iterative 
estimation of these parameters is the individual learning process that 

leads to social learning and the emergency of an acceptable 
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segmentation. The agent is rational in the sense that, given the 
perceptions, it tries to maximize the likelihood by adapting its beliefs. 

Memory: Each agent keeps track of its world model through the 

parameters a, a, g and g. Indeed, these parameters are the code 
that summarizes what the agent has learned so far. 

Action: Each agent is capable of increasing or decreasing its own gray 

level according to its perceptions and its model of the world. At the nth 
iteration, it computes its probability of being gravel, pg(n), and adds 

to its own gray level the quantity n(pg(n)-0.5), where n is a learning 
rate parameter that decreases with time. By changing their gray value, 

agents act on its world according to their beliefs. 

Language: The agents communicate indirectly among them 
stigmergically through their own action, since increasing or 

decreasing its gray level affects the environment (the perceptions) of 

the neighbor agents. But they also are capable of communicating their 

own state to each of its 3131 neighbors in a single broadcast message. 
This is a local communication capability for a limited amount of 

information (that required to compute the next estimate of g, a, g 

,a and ag). However, this iterated interaction eventually propagates 
the information over the whole image, given rise to the emergent 

segmentation of gravel and asphalt. 

Now we describe the probabilistic rational behavior of the agents 

according to their cognitive capabilities. On the space of N = 3 

principal components, the agents use a Gaussian mixture model 

(GMM). The fundamental idea is to assume that the probability 
density function of the features has the following form:  

      , , , , , (1 ) ,a g g g g g g a aa g g a
f d f d f d      μ μ α α μ α μ  

where d ℝ3 is the vector of principal components and   
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g and a are also vectors in ℝ3 that correspond to the expected values 

of the features in the gravel and asphalt pixels, respectively. g and a 

are matrices in ℝ33 that correspond to the correlation matrices of the 

features for the asphalt and gravel pixels, respectively. The agent 

estimates g, a, g ,a and ag through a simple procedure: The 3131 

neighborhood is segmented into a binary image IS through teenager 

cellular automata, and the estimations are obtained averaging over 

each kind of pixel: 
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where NP = 961 is the total number of pixels in the neighborhood, (x,y) 

runs over the 3131 neighborhood, and d(x,y) is the state of the cell in 

the position (x,y) of the neighborhood. Based on these estimates of g, 

a, g, a and ag, the cell computes the probability of being gravel for 

each neighbor pixel using Bayes’ rule:  

   
 

 
   

( , ) ,
( , )

( , ) , (1 ) ( , ) ,

g g g g

g g g g g a a a

f d x y
P G d x y

f d x y f d x y




   

α μ

α μ α μ

(1) 

where (x,y) runs over all pixels in its neighborhood. This probability 

goes through one step of refinement for re-estimating the parameters:  
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Finally, these new parameters are used to re-estimate the probability 

of the pixel to be gravel, as in equation (1). This is just one step of the 

EM algorithm [16], but the agent does not iterate it until convergence, 
because this is simply an intermediate opinion to be shared with the 

neighborhood, in order to emerge a global opinion, the segmented 

image. Indeed, this probability represents the belief of the agent   about 

its own classification. It tries to enforce this belief on its neighborhood 

by adding to its own gray level the quantity (P(G|d(x,y))–0.5), where 

 is a learning rate parameter that can be decremented with time.  

 
This process completes the perception/action cycle of each cognitive 

agent, which becomes a single step of the mature cellular automata. 

This cellular automata algorithm is repeated until convergence. Then, 

as the last step, we repeat the post-processing of the teenager cellular 
automata: local Otsu thresholding, regional maxima, image opening, 

distance transform, and region growing. 

 

6. SEGMENTATION RESULTS 
 

Figure 11 shows the evolution of P(G|d(x,y)), the local probability of 

each pixel to be gravel, during 15 steps of the cellular automata, which 

bring the automata close to equilibrium. Once the pixels have agreed 
on the probability of being gravel, the simple post-processing is 

performed, leading to the result shown in Figure 12. 

 

We have used several segmentation methods, not pretending to be 
exhaustive, but only to have something to compare with. As shown in 

Figure 13, we use an adaptive Otsu’s method, a k-means approach 

with the same parameters in ℝ17, a neural network with these 17 inputs 

trained with the manually segmented images, and a GMM/EM 

method. Recently we submitted a paper with a “committee of experts” 

method in which the four methods of Figure 13 are added and post-

processed with several heuristics [18]. Classification results are not as 
satisfactory as those of the two phase cellular automata, and time 

processing is several times bigger than that of the two phase cellular 

automata. 
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Figure 11. Evolution of social learning among cognitive agents 

 

 

 
Figure 12. Final classification through cognitive social learning 

cellular automata 

 

 

 

Figure 13. Segmentation by (a) adaptive Otsu, (b) 2-means on ℝ3, (c) 

Neural network and (d) GMM/EM 

 

As a final comparison, when the iteration with several graduate 
students starts with the output of the cognitive social learning cellular 

automata, the number of iterations and modifications is drastically 

reduced: The performance of our cognitive classifier got close to the 
human classifier.  

7. CONCLUSIONS 

 

Cognitive cellular automata is an interesting approach to complex 
systems engineering, since it can be applied as a mathematical model 

of a great number of complex systems in science and engineering. In 

this paper we used a simple model of social learning and opinion 

formation as an inspiration for granular segmentation. Using two 
stages of cognitive cellular automata, one resembling teenager’s tribe 

formation and another resembling mature opinion formation, we 

obtained a good asphalt/gravel classifier in pavement images. The 

results are better than traditional segmentation algorithms and the 
method requires less computation time. As a future work, we will 

consider opinion changes, so that we can track variations of class in 

dynamical distributed systems. Such changes could be used as 

inspiration for many engineering problems, such as collaborative 
access in cognitive radio networks. 
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