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MODELING FROM FIRST PRINCIPLES

NONLOCAL DIFFUSION –
DISCRETE AND CONTINUUM EQUATIONS

CALCULUS OF VARIATIONS

INFINITE-DIMENSIONAL VECTOR CALCULUS

PATTERNS AND WAVES



WHY DO PATTERNS FORM?
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    FIGURE 1,  LATTICE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Spin system u(r) ∈ {±1} on a lattice Λ.



Thermal fluctuations cause random flipping, so use
expected values u(r) ∈ [−1, 1].

This distribution, u, of expected values will evolve with
time, even without an externally applied field. Why is
that?

INTERACTION BETWEEN LATTICE SITES

TENDENCY TO DISSIPATE ENERGY

What is energy?



“We shall obtain a complete solution of the problem
... if we can express the free energy at each point as a
function of the density at that point and of the differences
of density in the neighboring phases, out to a distance
limited by the range over which the molecular forces act”
J.D. van der Waals, 1893

FREE ENERGY, E(u) of a spatial state u is

E = H − ST

where H is potential energy of interaction, S is entropy
and T is absolute temperature.

H(u) = −1

2

∑
r,s∈Λ

j(r − s)u(r)u(s),

j(r) is the (possibly anisotropic) interaction energy
coefficient associated with displacement r.



S(u) =

−K
∑
r∈Λ

[(1− u(r))ln(1− u(r)) + (1 + u(r))ln(1 + u(r))]

and so

E(u) =
1

4

∑
r,s∈Λ

j(r − s)[u(r)− u(s)]2+

∑
r∈Λ

{TK[(1− u)ln(1− u) + (1 + u)ln(1 + u)]− j̄

2
u2}.

What is the minimizer?
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    FIGURE   2A,   T>Tc 
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   FIGURE   2B,   T=Tc 
 
 
 



At subcritical temp. the total free energy of a spin field
{u(r) ∈ R : r ∈ Λ} has the form

E(u) =
1

4

∑
r,s∈Λ

j(r − s)(u(r)− u(s))2+

∑
r∈Λ

W (u(r)), (1)

where W is a double-well potential having minima at the
values u = ±α, say.

With an external field, the wells would not be of equal
depth or symmetric about 0.

Scale and take α = 1.

One may also consider a continuum version of this, in
which case the free energy is

E(u) =
1

4

∫
R2n

j(x− y)(u(x)− u(y))2dxdy+

∫
Rn
W (u(x))dx. (2)



Evolution?
SECOND LAW OF THERMODYNAMICS:

REDUCE FREE ENERGY—EFFICIENTLY

∂u

∂t
= − gradE(u). (*)

How do we interpret this? (Calc of Var.)
grad E(u) is a linear functional on X defined by

< grad E(u), v >=
d

dh
E(u + hv)|h=0

where <,> is the duality pairing.

If X = L2 then (*) becomes

∂u

∂t
= j ∗ u− ku−W ′(u) (NAC)

where k =
∫
j and * is convolution.

In the discrete case j ∗ u(r) =
∑

s∈Λ j(s)u(r − s).



Recall the first term in the free energy

1

4

∫∫
j(x− y)(u(x)− u(y))2dxdy,

and make the approximation (good (?) for short-range
interaction)

u(x)− u(y) ∼ ∇u(x) · (x− y).

If j is isotropic then this part of the energy can be written

ε2

2

∫
|∇u(x)|2dx,

where ε2 =
∫
j(y)y2

i dy/2.

The L2 gradient flow is the Allen-Cahn equation:

∂u

∂t
= ε2∆u−W ′(u) in Ω (AC)

with the natural boundary conditions

∂u

∂n
= 0 on ∂Ω.



How should (planar) interfaces move?

Traveling waves: u(x, t) = u(x · a + ct)

where a is a unit vector of direction and c is the
(unknown) speed.

Let f ≡ W ′ e.g. f (u) = (u − q)(u2 − 1), and for this
point we may as well rescale space so that ε = 1.

There exists a unique speed and (monotone) wave-form
(c0, u0) satisfying

u′′ − cu′ − f (u) = 0, u(±∞) = ±1, u(0) = 0.



What about TW’s for (NAC)?
Write J =

∫
a⊥ j and take

∫
J = 1.

J ∗ u− u− cu′ − f (u) = 0, u(±∞) = ±1, u(0) = 0.

This is truly an ∞− dim’l (differential?) eqt.
Idea: Deform the second order ODE into this:

λ(J ∗ u− u) + (1− λ)u′′ − cu′ − f (u) = 0,

u(±∞) = ±1, u(0) = 0, λ ∈ [0, 1].

G(u, c, λ) ≡ (λ(J ∗u−u)+(1−λ)u′′−cu′−f (u), u(0))

defined from C2 × R× [0, 1] into C × R.

Use the I F T at (u0, c0, 0) and the fact that 0 is an al-
gebraically simple eigenvalue of φ → φ′′−c0φ

′−f ′(u0)φ
with positive eigenfunction u′0. This gets us started.

If J ≥ 0 then, because Lφ ≡ φ − J ∗ φ is a positive
operator, we can continue for all λ ∈ [0, 1). Take the
weak limit to λ = 1, getting (c1, u1), then regularity using
monotonicity.



Interesting features:

• c1 may be 0 even when the depths of the wells of W
are not equal.

• u1 may be discontinuous.



II. WAVES ON A LATTICE
We have previously studied the Nonlocal Allen-Cahn

equation on a continuum:

∂u

∂t
= J ∗ u− ku−W ′(u) (NAC)

Recall the last result:

Theorem 1 Let J ∈ W 1,1 be even with unit integral
and let f be a smooth bistable function with zeros at
±1 and an intermediate point a. There exists a unique
solution (c, u), with u monotone and u(0) = 0, to

J ∗ u− u− cu′ − f (u) = 0. (TW )



On the integer lattice, the nonlocal Allen-Cahn equa-
tion may be written

u̇n = (J ∗ u)n − un − µf (un), n ∈ Z, (DAC)

where
(J ∗ u)n ≡

∑
i∈Z\{0}

J(i)un−i

and µ =
∑

i∈Z\{0} J(i).

Note that a special case of this equation is the discrete
Nagumo equation,

u̇n =
1

2
(un+1 − 2un + un−1)− µf (un),

studied by J. Keener and others in the context of myeli-
nated nerve axons but is also interesting from a numerical
analysis viewpoint.

Again, we seek traveling wave solutions to (DAC), i.e.,
solutions of the form un(t) = u(n + ct) for some speed c
and profile u.



Change to independent variable x = n + ct.
To hide the discrete nature of the problem, write Jδ(x) =∑
|i|≥1 J(i)δ(x− i) so that (DAC) in traveling wave

coordinates becomes

Jδ ∗ u− u− cu′ − µf (u) = 0, (DTW )

where Jδ ∗ u(x) =
∫
R Jδ(x− y)u(y)dy.

This traveling wave equation now looks remarkably like
(TW) from the last theorem.

(Strange?) IDEA: Approximate the discrete equation
by one in a continuum.

Let ψ ≥ 0 be an even, compactly supported smooth
function such that

∫
Rψ(x)dx = 1. Then δm(x) ≡ mψ(mx)

is a delta sequence, i.e.,

(δm ∗ φ)(x)→ φ(x) as m→∞, for φ ∈ C∞0 (R). Let

Jm(x) ≡
∑

1≤|i|≤m

1

wm
J(i)δm(x− i),

where wm ≡
∑

1≤|k|≤m J(k).



From the main result above,

Jm ∗ u− u− cu′ − µf (u) = 0, (SDTW )

has a unique solution (cm, um) with um monotone and
satisfying um(±∞) = ±1, um(0) = 0.

Since −1 ≤ um ≤ 1 and um is monotone, Helley’s
theorem allows one to take a pointwise convergent subse-
quence, converging to uδ, say.

One can easily show that {cm} is also bounded and we
may assume that this sequence converges to some cδ.

However,the singular nature of the infinite sum of delta
functions and the lack of control on the first derivatives
prevents one from simply passing to the limit in the equa-
tion as m→∞.

Use Fubini’s and Lebesgue’s theorems with weak solu-
tions.



If cδ 6= 0 then uδ ∈ W 1,1 and a bootstrapping argument
shows that uδ ∈ Cr+1 if f ∈ Cr.

If cδ = 0, then uδ need not be continuous and so
Jδ ∗uδ(n) need not equal

∑
|i|≥1 J(i)uδ(n− i). However,

since uδ is monotone, it has at most countably many dis-
continuities and a sequence un can be obtained satisfying

(J ∗ u)n − un − µf (un) = 0.

Using monotonicity of the approximating solutions um
one can show that our solution has the correct limits at
±∞.

Note that, if g(u) = u + µf (u) has a null truncation,
then cm = 0 for all m and hence cδ = 0.

However, in this case the converse is not true.
More pinning is possible in the discrete case than in the
continuum.



III PATTERNS

An important result obtained in the late 70’s inde-
pendently by Casten-Holland and Matano: Let Ω be a
smooth convex domain and consider the nonlinear parabolic
equation (the Allen-Cahn equation is an example) :

∂u

∂t
= D∆u− f (u) in Ω (NPDE)

with the Neumann boundary condition

∂u

∂n
= 0 on ∂Ω.

Theorem 2 If u is a stable solution to (NPDE),
then it is constant u(x) ≡ C with f (C) = 0.



We consider the evolution equation

∂u

∂t
= D(J ∗ u− u)− f (u) (NAC)

where D > 0 (from the last part D = 1/µ).
Let M be a measurable set with complement M c. Let

α− < 0 be the local max of f and α+ > 0 be the local
min.

Theorem 3 For D > 0 sufficiently small there exists
a unique stationary solution û to (NAC), such that

û(x)

{
≥ α+ for x ∈M,
≤ α− for x ∈M c.

Moreover, û is C0 on M and M c, C2 on int(M) and
int(M c) and (locally) asymptotically stable in the L∞(Rn)
norm.
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