Diálogo entre profesores en formación y en ejercicio.

Julio 2012
“Este es un espacio para que los docentes en ejercicio y en formación encuentren y compartan ideas sobre posibilidades de transformación de los sistemas escolares, abriendo nuevos caminos que permitan enfrentar los retos educativos impuestos por las nuevas sociedades”

COMITE EDITORIAL

Director:
Diego Fabian Vizcaíno Arévalo
Subdirectora:
Olga Lucía Castiblanco Abril

Comité Técnico Editorial:
GEAF “Grupo Enseñanza y Aprendizaje de la Física”. PCLF Universidad Distrital Francisco José de Caldas.

Caratula: Fotografía Estroboscopica de un dado en movimiento. Diego Vizcaíno.

Comité Científico:

Ms. Diana Fabiola Moreno Sierra.
Doctoranda Universidad Estadual Paulista UNESP Bauru Brasil.

Ms. Gustavo Iachel
Profesor Universidad Universidad Estadual de Londrina, Brasil.

Ms. Jairo Gonçalves Carlos
Doctorando Universidad Estadual Paulista UNESP Bauru Brasil.

Maestranza Universidad Nacional de Entre Ríos, Argentina.

Dr. Leonardo Fabio Martinez Perez.
Profesor Universidad Pedagógica Nacional.

Dr. Liz Mayoly Muñoz Albarracin.
Profesora Universidad Distrital Francisco Jose de Caldas, Bogotá, Colombia.

Ms. Luciana Bagolin Zambon.
Doctoranda Universidad Federal de Santa Maria, Brasil.

Ms. Liz Ledier Aldana Granados.
Profesora Secretaria de Educación del Distrito Bogotá Colombia.

Ms. Renata Cristina Cabrera
Profesora Universidad Federal de Mato Grosso, Brasil.

Ms. Viviane Clotilde da Silva
Profesora Universidad Regional de Blumenau, Brasil.

Los artículos publicados en la revista pueden ser reproducidos total o parcialmente, citando la fuente y el autor. Cada artículo representa la idea del autor únicamente y no del cuerpo editorial.
EDITORIAL:

ENTREVISTA
ANGEL ROMERO .. 3
Olga Castiblanco.

ARTICULOS:

Analisis del proceso inclusivo del alumno ciego en clases de Física Moderna.6
Eder Pires de Camargo; Roberto Nardi, Edval Rodrigues de Viveros.

La enseñanza de la Física a través de Modulos Experimentales 32
Ronald Avendaño, Wilson Lancheros, Olga Castiblanco, Fabio Omar Arcos.

Interacciones Discursivas e Indisciplina en clases de Ciencias de sexto grado,
Estudio de Caso. .. 50
Caio Samuel Franciscati da Silva; Rosemary Rodriguez de Oliveira.

Elementos fundamentales para la Evaluación objetiva de Software empleado en la Enseñan-
za de la Física. ..66
Jorge Luis Navarro, Fredy Juez, Pilar Infante, Alejandro Hurtado.

RESEÑA:
Razonar en Física, la contribución del sentido común. Laurence Viennot 84
Carolina Marin.
ENTREVISTA CON ANGEL ROMERO

Dr. Angel Enrique Romero Chacon, Profesor titular de la Facultad de Educación de la Universidad de Antioquia, líder del grupo de investigación “Estudios Culturales sobre las Ciencias y su Enseñanza”

OLGA CASTIBLANCO (OC): Buenas tardes, en primer lugar agradecemos el concedernos esta entrevista y nos gustaría hablar un poco de tu formación académica y tus principales intereses de investigación.

ANGEL ROMERO (AR): OK, igualmente agradezco la invitación a este espacio, pues considero muy importante compartir este tipo de experiencias con otros colegas investigadores de la misma área y creo que en la medida en que este tipo de relaciones se den, la comunidad académica va creciendo y se va fortaleciendo. El hecho de establecer sinergias con otros grupos de investigación va ampliando las posibilidades y materializando este crecimiento. Respecto a mi formación, soy Licenciado en Física de la Universidad Pedagógica Nacional, después hice la Maestría en Docencia de la Física también en la Universidad Pedagógica Nacional. Posteriormente realicé mis estudios de Doctorado en Epistemología e Historia de las Ciencias y las Técnicas en la Universidad de Paris VII (París, Francia).

OC: Cual fue el tema de tu tesis?

AR: Desde el pregrado he estado trabajando en la línea que trabaja la profesora María Mercedes Ayala en lo que tiene que ver con la relación entre Historia y Epistemología de las Ciencias y la enseñanza de las ciencias, entonces en el pregrado me enfoque mas sobre la relación entre Física y Matemática, en particular en la relación entre la teoría de grupos y teoría de relatividad para mirar como se establecían algunas relaciones conceptuales y propuestas de enseñanza; ya en la Maestría mi tesis fue sobre la propuesta de Leonard Euler en mecánica de los medios continuos, un trabajo mas de tipo histórico y epistemológico con algunas sugerencias e implicaciones didácticas. Algunos años después tuve la oportunidad de hacer el Doctorado en la Universidad de Paris 7 en Francia con el profesor Michel Paty, también en la misma línea de las relaciones entre Historia y Epistemología de la Física. Allí, que continué trabajando en una profundización de la propuesta de la Mecánica hecha por Leonard Euler, en particular sobre cómo trabajaba los aspectos epistemológicos en relación con los fundamentos de su obra en mecánica. Bien que en este trabajo no se evidencia tanto el aspecto de la enseñanza de la Física, he venido complementando con trabajos acá en la Universidad con mi grupo de investigación para tratar de materializar esta propuesta de enseñanza desde los análisis de Euler y desde otras perspectivas de Historia de la Física en la enseñanza.
OC: vimos en tus trabajos recientes que manifiestas un especial interés en estudiar el papel de la experimentación en el desarrollo del pensamiento físico, quisieramos saber un poco sobre la forma como concibes la experimentación y el rol que puede jugar en la formación del pensamiento.

AR: Sí, pues esta temática de investigación surgió como consecuencia de un par de investigaciones que realicé después de mi vinculación con la Universidad de Antioquia y que dan continuidad a los trabajos de la maestría y el doctorado. Inicialmente se trataba de la matematización de los fenómenos físicos, analizando el porqué usualmente se considera la Física como una ciencia experimental, una ciencia de lo concreto; mientras que las matemáticas se consideran el prototipo de las ciencias abstractas. Tradicionalmente la relación entre estas dos disciplinas se asume como siendo “de aplicación”. La investigación propone que la relación debe mirarse más bien como una relación “de constitución”. Esa primera investigación abrió una perspectiva de trabajo sobre la relación entre Matemáticas y Física para estudiar las condiciones de posibilidad para matematizar ciertos conceptos o propiedades físicas, y cómo no es posible habar de una física y una matemática en forma independiente.

OC: Como defines ese término de “Matematizar”...

AR: Inicialmente la matematización era pensada mas en el sentido de una manera de representar ciertas propiedades físicas a través de ciertos símbolos matemáticos algebraicos, no obstante por la misma investigación fue mostrando que no se trataba simplemente del termino matematización, sino un asunto mas de formalización, que de hecho fue la segunda etapa de esa investigación. Entonces optamos por la formalización en el sentido de “dar forma” a ciertas propiedades físicas, en donde esa forma tiene que ver con ciertas estructuras matemáticas que de alguna manera son consistentes o adecuadas con ciertas estructuras físicas: La relación entre física y matemática es muy estrecha en la medida en que una propiedad física identificada solamente es posible de ser formalizada en la medida en que se identifica paralelamente su estructura matemática y se adecua una simbología correspondiente a la propiedad física que se quiere formalizar.

OC: quiere decir que el desarrollo del pensamiento físico en el estudiante se da cuando formaliza?

AR: Sí... es un proceso en el cual la formalización no se da de manera independiente de la comprensión y construcción de los conceptos y magnitudes físicas para la organización de la experiencia sensible; es un proceso simultáneo. Usualmente se dice que las matemáticas son el lenguaje de la física, que la física es una aplicación de un lenguaje abstracto; con esta estrecha relación se resalta mas bien que se trata de una relación de constitución: los conceptos físicos no pueden formalizarse sino a través de ciertas estructuras matemáticas; e inversamente, varios conceptos matemáticos tiene una razón de ser, precisamente porque tienen un significado físico.

OC: Sí, ese es casi un slogan...

AR: Sí, comúnmente se mira a las matemáticas como el lenguaje y a la Física como una aplicación de los conceptos matemáticos. Pero me he venido dando cuenta que esto no ha sido lo usual a lo largo de la historia de la física. La relación entre matemática y física ha sido más de constitución; significa que no se puede entender ni significar un concepto físico si paralelamente no se comprende y conceptualizan unas ciertas estructuras matemáticas, entonces es una relación de doble vía, y mientras no se muestre exactamente la relación, se terminará siempre asumiéndolas como diferentes... Entonces cuando uno dice que va a construir el pensamiento físico también está construyendo una manera de ver ciertas
fenomenologías, y esas maneras de ver están relacionadas con la idea de formalizar, de dar forma a una serie de situaciones y de eventos que en principio se nos presentan ante los sentidos y que luego al construirse la magnitud y el significado ya es suficientemente formalizado. El asunto de la formalización es paralelo al asunto de la significación de los aspectos físicos. En ese sentido, el desarrollo del pensamiento físico no es diferente de los aspectos de construcción conceptual y significación de cierta clase de estructuras matemáticas.

OC: Uhum, ¿y cómo debe ser entendido el papel de la experimentación en esta perspectiva?

AR: El asunto de la experimentación es la tercera etapa de esta vía. La experimentación tiene diversas dimensiones de análisis; dentro de ellas, y tal vez una de las más importantes, es la relación entre teoría y práctica. Usualmente se dice que una ciencia experimental tiene que ver con toda parte empírica como observar, tomar datos, medias, etc.; pero pocas veces se enuncia que la observación siempre está mediada por una concepción de lo que se quiere observar: la observación está cargada de teoría. Entonces en ese sentido no hay una diferencia radical entre el aspecto teórico conceptual y lo que se quiere percibir en la experiencia, y ahí vuelve a entrar en juego todo el asunto sobre la formalización de conceptos físicos.

El problema de la medida, o mejor de la medibilidad, es muy importante. Usualmente la experimentación en la clase de física se enmarca dentro del tema de la medida, pero la idea de medida se reduce a un asunto de aplicación de instrumentos, técnicas de toma y precisión de los datos, teorías de errores, etc.; pero no se aborda el problema de la medibilidad. Más allá del procedimiento y precisión de medida de una magnitud física, es preciso comprender hasta qué punto una propiedad física puede ser representada a través de un número, con la seguridad de que ese número representa la medida de esa magnitud. El problema de la medibilidad es muy interesante y surge a finales del siglo XIX cuando los físicos empezaron a reflexionar sobre ciertas cualidades que aparentemente se salían del campo de la mecánica y se hacía necesario empezar a abordarlas a través de representaciones no geométricas, llevando a reflexionar hasta qué punto una propiedad, como puede ser la temperatura, la presión, la carga eléctrica, o el potencial eléctrico, que no son las magnitudes usuales de distancia, tiempo y velocidad, pueden asignárseles números y qué significan esos números asignados. Solamente cuando se empezó a reflexionar sobre esto, se empezó a construir lo que significa la medición de una propiedad física, y ahí es donde la parte de la experimentación me parece que tiene mucho que decir tanto conceptualmente como del lado de la enseñanza.

OC: Me imagino que has venido aplicando esta perspectiva en tu ejercicio docente para la formación de profesores de física...¿cuál se podría decir que es la principal ventaja que ofrece al futuro profesor?

AR: Yo hablaría de dos aspectos claves. Uno sobre las reflexiones de orden disciplinar de la física, algo así como "pensar la física para enseñarla". En el mundo hay muchos grupos trabajando en esta línea; no es un asunto de didactizar la física (digámoslo así), sino es de pensar el contenido disciplinar para evaluar cuál es la manera más adecuada de construir e implementar una propuesta de enseñanza. Por ejemplo, autores como Guidoni y su grupo de trabajo, o el profesor Friedrich Hermann en Alemania tienen esta línea de trabajo sobre cómo es posible pensar la física para poderla enseñar. De otra parte, también veo que hay una relación entre el aspecto experimental y el aporte de la Historia y la Epistemología de la Física para reflexionar sobre lo que podemos llamar “la naturaleza de las ciencias”. Estos dos aspectos son fundamentales para la formación y el ejercicio de los profesores. Un profesor necesita no solamente conocer el contenido que va a enseñar, sino que también debe tener
concepciones sobre la metodología del desarrollo científico, sobre la naturaleza del conocimiento científico. Este es un campo muy fructífero para resolver los problemas de la enseñanza de la física, tanto en formación inicial como en formación continuada y en su práctica docente, el profesor debe tener una posición clara sobre cuáles son los aspectos epistemológicos de la Física, qué perspectiva quiere desarrollar, conocer históricamente qué clase de problemas trata de resolver la enunciación de una determinada ley o principio, eso es fundamental para el ejercicio docente.

OC: De acuerdo, es importante que el profesor además de saber lo que enseña, sea consciente de qué es lo que verdaderamente entiende de lo que enseña.

AR: Claro, y debe poner en juego su perspectiva de forma consciente, porque de lo contrario su voluntad terminará siendo manejada por otros factores externos a él, es importante que por lo menos tenga criterios...

OC: Uhum, pues este tema es bien importante y se presta para continuar construyendo un diálogo entre discursos sobre el asunto...

AR: De acuerdo, yo creo que hay muchas relaciones y es interesante crear esas sinergias para profundizar en estos temas y ganar mayor impacto que trabajando de forma aislada.

OC: Sí, esperamos poder continuar estos análisis en otros espacios. Ya para finalizar cuéntanos un poco sobre tus proyecciones en este campo.

AR: Bueno... hay varias ideas, actualmente estamos tratando de formalizar aquí en la Universidad de Antioquia una propuesta de Maestría en Educación en Ciencias: Existe una Maestría en Educación y dentro de ella hay una línea de enseñanza de las ciencias, pero nosotros creemos que hay suficiente autonomía de la didáctica, o mejor educación en ciencias como para que tenga un programa independiente a nivel de Posgrado. Este es un trabajo académico-administrativo. Ya en el campo de la investigación vemos que esta componente de la Historia y Epistemología de las Ciencias y su relación con la enseñanza de las ciencias es fundamental para la formación de maestros a cualquier nivel: básico, medio, superior y para su formación continuada, para todos hay una riqueza enorme; entonces la idea es seguir desarrollando la línea en varios aspectos, por ejemplo, reflexiones sobre la importancia de la formación socio-política del profesor, el hecho de que tengan una posición importante sobre su conocimiento disciplinar, sin estar al margen de una concepción de ciencia y de lo que significa enseñar ciencias y para qué enseñarla en nuestro contexto, ahí retomo mucho de mi formación en el grupo Física y Cultura, pues esa es como la impronta que me lleva a seguir desarrollándola y obviamente conjugándola con propuestas didácticas de aula, sobre aspectos usuales como la enseñanza de la mecánica, pensando por ejemplo, como a través de una experiencia de aula a cualquier nivel puede formarse el pensamiento científico, el pensamiento físico... En este momento estamos desarrollando una investigación financiada por Colciencias que trata de relacionar aspectos del contenido disciplinar en diferentes ciencias, en donde Física es una de ellas, la propuesta de argumentación en el aula de clase y la formación para la construcción de civilidad; la idea es mirar cómo esos tres aspectos se pueden articular en propuestas didácticas de aula.

OC: Bueno, pues nuevamente muchas gracias por compartir con nosotros estas ideas y perspectivas de trabajo y deseamos éxitos en esos proyectos.

AR: Gracias a ustedes por la invitación y hasta pronto.
ANÁLISIS DEL PROCESO INCLUSIVO DEL ALUMNO CIEGO EN CLASES DE FÍSICA MODERNA

Eder Pires de Camargo¹
Camargoep@dfq.feis.unesp.br
Roberto Nardi²
Nardi@fc.unesp.br
Edval Rodrigues de Viveiros³
edvalrv@ig.com.br

RESUMEN

Este artículo forma parte de un estudio que busca comprender cuales son las principales barreras y alternativas para la inclusión de alumnos con deficiencia visual en el contexto de la enseñanza de la Física. Se presentan y discuten tanto las dificultades como las viabilidades para la participación efectiva del alumno ciego de nacimiento en clases de física moderna. Por medio del análisis de contenido, se identifican seis tipos de clases que dificultan y cuatro que posibilitan el proceso. Como conclusión, se enfatiza en la importancia de la creación de ambientes de comunicación adecuados, la interacción como elemento de inclusión, así como la necesidad de la destitución de ambientes que segregan al interior de la clase.

Palabras-clave: Inclusión. Deficiencia visual. Física moderna.

ABSTRACT

This paper is aimed at understanding which the most important difficulties and alternatives to include students with visual impairments in physics classes. It presents and discusses the difficulties and viabilities of having a born blind student effectively attend Modern Physics classes. Using content analysis, this experiment identifies 6 functional classes that might correspond to difficulties and 4 which refer to the viabilities. Therefore, the importance of appropriate communicative environments, the including role of the interactivity element, as well as the need for destitution of segregation environments inside classroom, are emphasized.

Keywords: Inclusion. Visual impairment. Modern Physics.

Introducción

Para incluir estudiantes con deficiencia visual en un ambiente social, es necesario reconocer las viabilidades y dificultades de las prácticas educativas, preparándolas para valorar la heterogeneidad humana, lo cual implica aceptar a todos los individuos con sus respectivas

¹ Professor Dr. do Departamento de Física e Química da Faculdade de Engenharia da universidade Estadual Paulista "Júlio de Mesquita Filho", e do programa de pós-graduação em Educação para a Ciência, Bauru, SP.
² Professor Dr. do departamento de educação e do programa de pós-graduação em Educação para a Ciência da Universidade Estadual Paulista "Júlio de Mesquita Filho", Bauru, SP.
³ Doutorando do Programa de Pós graduação em Educação para a Ciência, Universidade Estadual Paulista Júlio de Mesquita Filho – UNESP – Campus de Bauru.
condiciones personales (Mantoan, 2003). La inclusión se posiciona de forma opuesta a las tendencias de homogenización y normalización (Sassaki, 1999), y defiende el derecho a la diferencia, la heterogeneidad y la diversidad (Rodrigues, 2003).

La inclusión se da por medio de tres principios generales; la presencia del estudiante con deficiencia en el aula regular, la adecuación de las respectivas aulas e instituciones educativas de acuerdo con las necesidades de los participantes, y, el ofrecimiento de condiciones para que el estudiante con deficiencia se desarrolle en un contexto escolar (Sassaki, op.cit.). Esto implica que se debe garantizar la adecuación del ambiente educativo, con el fin de generar, movilizar y orientar condiciones para la efectiva participación del estudiante (Mittler, 2003). En la lógica de la inclusión, las diferencias individuales son reconocidas y aceptadas, constituyéndose en la base para la construcción de un abordaje pedagógico innovador.

En este enfoque, no hay lugar para exclusiones o segregaciones, y todos los alumnos, con y sin deficiencias, participan efectivamente (Rodrigues, op.cit). La participación efectiva se da en la medida en que las actividades escolares, ofrecen plenas condiciones de actuación al alumno con deficiencia visual, explicitando sus verdaderas necesidades educativas. Por lo tanto es importante invertir en investigaciones que revelen las características, particularidades y especificidades de este tipo de inclusión. En este sentido, tomamos como objeto de estudio la participación efectiva de alumnos deficientes visuales, evaluando la relación del estudiante con los contenidos conceptuales y procedimentales en clases de Física moderna. De acuerdo con Zabala, 1988, los contenidos conceptuales están relacionados al conocimiento de hechos, conceptos y principios, los contenidos procedimentales se relacionan con las reglas, técnicas, y habilidades, y los contenidos actitudinales se relacionan con principios éticos.

Antecedente histórico y contexto de la investigación

Este trabajo forma parte de un estudio desarrollado entre los años 2005 y 2010. En la primera parte se analizaron los planes de aula de estudiantes de Licenciatura en Física (Camargo, 2008), y en la segunda parte se analizaron las aplicaciones de las actividades en ambientes de enseñanza de la Física con inclusión de estudiantes ciegos.

Los procesos de investigación se dieron en cuatro etapas: (a) orientación y registro de todo el proceso de elaboración y aplicación de las actividades para la enseñanza de diversos tópicos de Física en el año 2005; (b) transcripción de las actividades en el año 2006; (c)
elaboración de las categorías de análisis para la comprensión del proceso educativo en cuestión en el año 2006; (d) Análisis de los módulos de enseñanza de 2007 a 2010.

Los datos analizados para este trabajo fueron constituidos en un curso llamado “el otro lado de la física” ofrecido en el año 2005 por los estudiantes de Licenciatura de una Universidad pública del estado de Sao Paulo. Este curso hizo parte de la practica docente de los licenciandos y contó con módulos que abordaron los siguientes temas: óptica, electromagnetismo, mecánica, termodinámica y física moderna. Los módulos fueron formados por 4 actividades de duración individual de 4 horas. La organización para la aplicación de las actividades se dio en dos etapas, “momento de planeación heurística” y “momento de definición del locus pedagógico”

El “momento de planeación heurística” se caracterizó por dos acciones básicas realizadas en el primer semestre de 2005: planeación de módulos y materiales de enseñanza, y discusión reflexiva de temas relacionados a la enseñanza de la física y a la deficiencia visual. Iniciando el primer semestre, en la materia del pregrado “Practica de enseñanza de la física”, solicitamos a los estudiantes conformar cinco grupos de acuerdo con las temáticas de física mencionadas anteriormente (planeación de módulos y materiales de enseñanza). Enseguida fue presentado para los grupos el siguiente problema educativo:

“Planear un mini curso de 16 horas, sobre el tema de física escogido por cada grupo, adecuando las actividades a las especificidades educativas de alumnos con y sin deficiencia visual”

En los siguientes encuentros (discusión reflexiva) fueron abordados temas relacionados a la enseñanza de la física y a la deficiencia visual (Camargo, 2000,2005). Tales discusiones fueron orientadas por dos coordinadores, siendo A el docente responsable por la materia en el pregrado, y B investigador (primer autor de este trabajo). Destacamos que B tiene experiencia en el campo de la enseñanza de la Física/deficiencia visual por los siguientes motivos: (1) es deficiente visual y docente de física. Hecho que le permite tener experiencia práctica como alumno y también como profesor de física con deficiencia visual; (2) desarrolló investigaciones de maestría y doctorado sobre la temática aquí enfocada.

Los licenciandos definieron que las actividades conformarían un curso de extensión para ser ofrecido por la Universidad para un colegio público de enseñanza media vocacional, de una ciudad del interior de São Paulo (colegio 1). En el “Momento de definición de locus pedagógico” la selección del colegio se dio por cuatro factores: (a) estaba vinculado a la Universidad; (b)
existencia de buenas relaciones entre el colegio y la Universidad; (c) ya habían sido ofrecidos cursos similares y habían tenido éxito; (d) localización cercana a la Universidad, lo cual facilitaría el desplazamiento de los licenciandos. Después de firmar el acuerdo se dio inicio a la segunda etapa.

3 – Descripción de las actividades desarrolladas

Al comienzo del segundo semestre de 2005, los licenciandos iniciaron un periodo de divulgación junto con los estudiantes del colegio 1. La cantidad de cupos para la participación de los estudiantes fue de treinta y cinco, ya que el número de inscritos fue aproximadamente de setenta. La selección de los treinta y cinco estudiantes se dio por sorteo.

Paralelamente al proceso de divulgación, contactamos otro colegio (colegio 2) público de la misma ciudad con el fin de invitar estudiantes con deficiencia visual para participar en el curso. Esto fue necesario ya que en el colegio 1 seleccionado no habían estudiantes con deficiencia visual. El colegio 2 tenía una sala de recursos pedagógicos para atender las necesidades educativas de alumnos con deficiencia visual en la región (Ej. Enseñanza de Braille, transcripción de textos o exámenes en Braille)

Dos estudiantes con deficiencia visual se interesaron en participar del curso. Uno de los alumnos nació ciego y el otro perdió la visión a lo largo de su vida. Aclaramos que esos alumnos estudiaban en diferentes colegios públicos. El colegio 2 ofrecía para ellos un servicio educativo de apoyo y no de substitución de la enseñanza regular. Destacamos que los resultados presentados enfatizan las viabilidades y dificultades vivenciadas por el alumno que nació ciego (identificado en el texto como alumno B).

El grupo de física moderno se conformo por cuatro licenciandos que se alternaron entre las funciones de coordinación (aspectos más relacionados a las situaciones de naturaleza pedagógica) y las actividades de apoyo (involucrandose situaciones de organización logística). A partir de los procedimientos descritos, se conformó un ambiente de enseñanza semejante a una clase común. En este ambiente, los licenciandos realizaron sus prácticas enfrentando la temática de la inclusión.

4 - Metodología de análisis y técnica para la recolección de datos.

Al trabajar con material de naturaleza comunicativa sobre el cual pretendíamos realizar inferencias, índices o indicadores, utilizamos la técnica de análisis de contenido presentada por
Laurence Bardin (1977). Esta metodología de análisis considera procesos comunicativos que se pueden expresar o registrar utilizando aquello que la autora llama **prácticas** (entrevistas, cuestionarios, asociación de palabras, diarios metacognitivos, etc.). En nuestro caso utilizamos el registro audiovisual (16 horas de grabación) y posteriores transcripciones escritas de la totalidad de las actividades que conformaron el **corpus** del análisis.

Para esto, adoptamos dentro de esta técnica los siguientes procedimientos: exploración del material (fragmentación del **corpus** a ser analizado), tratamiento de los resultados e interpretación para la realización de un análisis temático. Al tener un conjunto bastante complejo y extenso de datos, presentamos el análisis de contenido en dos etapas sucesivas.

En la primera etapa partimos de la definición de las **variables inferidas**, organizadas en dos grupos. El primero se refiere a lo que llamaremos **factores extrínsecos**, a los cuales nos referimos por ‘**clases**’: Comunicación, Segregación, Uso de materiales, Operación matemática, Simulación computacional, Presentación de modelos, Experimento, Operación de software, Pieza teatral. Estas clases son unidades de análisis dadas a priori.

Estas son también variables responsables por la producción del proceso comunicativo de las situaciones didácticas, y que, posteriormente, constituyeron el material para la obtención de las inferencias. Las otras variables inferidas constituyeron los **factores intrínsecos**, que fueron dados por dos grandes categorías, **Lenguaje y Contexto**, y cuyo análisis fue efectuado en la segunda etapa. Para analizar la influencia de aquellas clases, definimos dos valores de análisis: siendo ‘**Sí**’, cuando se verifica la presencia de la variable, y ‘**no**’ cuando no se verifica tal presencia.

Finalmente, para evidencia la participación efectiva (o no) del estudiantes ciego de nacimiento en las actividades de física moderna, definimos dos categorías de análisis (**variables de inferencia**) llamadas como ‘**viabilidades**’ y ‘**dificultades**’. El siguiente paso fue organizar en una matriz las variables inferidas y las variables de inferencia, comparativamente con los respectivos valores. El resultado se presenta en la Tabla 1.

Observamos en la Tabla 1 que la clase comunicación fue común para las dificultades y viabilidades de inclusión. Por otro lado, se verificaron clases que representaron dificultades o viabilidades de inclusión.
Tabla 1. Panorama de dificultades y viabilidades de inclusión para el alumno ciego de nacimiento.

<table>
<thead>
<tr>
<th>Categoría ‘Dificultad’</th>
<th>Clases</th>
<th>Valor/Ocurrencia</th>
<th>Categoría ‘Posibilidad’</th>
<th>Clases</th>
<th>Valor/Ocurrencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comunicación</td>
<td>Si</td>
<td>Comunicación</td>
<td>Si</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segregación</td>
<td>Si</td>
<td>Segregación</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uso de materiales</td>
<td>No</td>
<td>Uso de materiales</td>
<td>Si</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operación matemática</td>
<td>Si</td>
<td>Operación matemática</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulación computacional</td>
<td>Si</td>
<td>Simulación computacional</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presentación de modelos</td>
<td>No</td>
<td>Presentación de modelos</td>
<td>Si</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimento</td>
<td>Si</td>
<td>Experimento</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operación de software</td>
<td>Si</td>
<td>Operación de software</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pieza teatral</td>
<td>No</td>
<td>Pieza teatral</td>
<td>Si</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Con esto conseguimos identificar mejor las categorías dificultades y viabilidades de acuerdo a sus respectivas clases. Así, tenemos:

Categoría ‘dificultades’: Las clases segregación, operación matemática, simulación computacional, operación de software y experimento representaron solamente dificultad para la participación efectiva del estudiante.

Categoría ‘viabilidades’: Las clases uso de materiales, presentación de modelos y pieza teatral representaron apenas alternativas a tal participación, siendo entonces elementos que favorecen el proceso comunicativo implícito o explícito durante las actividades.

Así, de ahora en adelante procederemos a la segunda parte del análisis, que consistirá en la profundización y la descripción detallada en relación a las categorías Lenguaje y Contexto, y la relación de estas con las clases mencionadas anteriormente.

4.1 - Definiendo las unidades de análisis

4.1.1 - Categoría 1: Lenguaje

La presente categoría permite comprender se las informaciones ofrecidas por los licenciandos fueron accesibles para el estudiante con deficiencia visual. La accesibilidad será evaluada en razón de las estructuras empírica y semántico-sensorial de los lenguajes utilizados para el ofrecimiento de informaciones.
a) **Estructura Empírica del Lenguaje:** se refiere al soporte material del lenguaje (Martino, 2005), es decir, la forma por medio de la cual una determinada información es materializada, almacenada, ofrecida y percibida. Se puede organizar en términos fundamentales y mixtos. Las estructuras fundamentales son constituidas por los códigos; visual, auditivo y táctil, articulados de forma autónoma y/o independiente unos de los otros. Las estructuras mixtas surgen cuando los códigos fundamentales se combinan de forma interdependiente, es decir, estructuras; audiovisual, táctil-visual, táctil-auditiva y táctil-visual-auditiva. Se observa que los sentidos de naturaleza olfativa y gustativa no serán, para efectos del análisis de esta categoría, considerados como códigos sensoriales utilizados para el intercambio de informaciones. Aunque la existencia de tales códigos sea posible, se entiende, por hipótesis, que para contextos de clase de física moderna no sea necesario considerarla.

b) **Estructura Semántico-sensorial del Lenguaje:** se refiere a los efectos producidos por las percepciones sensoriales en el significado de fenómenos, conceptos, objetos, situaciones y contextos (Dimblery y Burton, 1990). Esos efectos son entendidos por medio de cuatro referenciales asociativos entre significado y percepción sensorial: (a) la indisociabilidad; (b) la vinculación; (c) la no relacionabilidad y (d) la relacionabilidad secundaria.

Significados indisociables son aquellos cuya representación mental y dependiente de determinada percepción sensorial. Esos significados nunca podrán ser representados internamente por medio de percepciones sensoriales distintas de las que los constituyen.

Significados vinculados son aquellos cuya representación mental no es exclusivamente dependiente de la percepción sensorial utilizada para su registro o esquematización. Siempre podrán ser representados por medio de percepciones sensoriales distintas de la inicial.

Significados sensorialmente no relacionables (o sin relación sensorial) no poseen vínculo o asociación con cualquier percepción sensorial. Aún cuando el aprendiz pueda construir representaciones mentales sensoriales acerca de ideas con la presente característica, las mismas nunca corresponderán de hecho a los fenómenos/conceptos que se quieren comunicar. Las representaciones mentales con la característica semántico-sensorial aquí discutida se encontrará siempre en el nivel analógico, metafórico y artificial. Se tratan, por tanto, de significados abstractos referentes a los contractos hipotéticos elaborados para la explicación de fenómenos, efectos, propiedades, etc.
Significados de relacionabilidad sensorial secundaria (o de relación sensorial secundaria) son aquellos cuya comprensión establece una relación no prioritaria con el elemento sensorial. En otras palabras, aunque ocurran construcciones de representaciones mentales sensoriales por parte del aprendiz, las mismas no representan pre-requisitos para la comprensión del fenómeno/concepto abordado. La idea de representación utilizada en esta categoría de análisis es aquella contenida en Eysenck y Keane (1991). De acuerdo con los autores (op. Cit. P. 202) representación es “cualquier notación, signo o conjunto de símbolos capaz de representar, aun en ausencia del representado, algún aspecto del mundo externo o de nuestra imaginación”

De forma más específica, la presente categoría se fundamenta en el concepto de “representaciones internas” o “representaciones mentales”, que ocurren en el nivel subjetivo de la cognición, del pensamiento. En otras palabras, tales representaciones se refieren “a las formas en que codificamos características, propiedades, imágenes, sensaciones, etc., de un objeto percibido o imaginado, tanto como, de un concepto abstracto” (Eysenck y Keane, 1991, p.202)

De esa forma, la caracterización de los lenguajes obedeció a la relación:

\[
\text{Lenguaje} = [\text{estructura empírica}] + [\text{estructura semántico-sensorial}].
\]

La evaluación de una posibilidad o dificultad comunicativa tomó en cuenta el hecho de que un determinado lenguaje hubiese permitido o no que el alumno ciego de nacimiento tuviera acceso a la información ofrecida. En otras palabras, la accesibilidad fue evaluada en razón de la potencia comunicativa de las estructuras empírica y semántico-sensorial del lenguaje en comparación con la característica visual del alumno (Ciego de nacimiento)

4.1.2 - Categoría 2: Contexto.

Se refiere a las dos características inherentes a la presencia del alumno (B) en las actividades: (a) espacio de instrucción que contempla la presencia del alumno ciego; y (b) nivel de interactividad de ese espacio.

a) Espacio de instrucción: episodio y episodios particulares.

a.1 - Episodios: se refieren a espacios de instrucción común a los alumnos con y sin deficiencia visual, esto es, momentos en los que todos los estudiantes se involucraron en las mismas tareas coordinadas por los licenciandos. Una característica fundamental de los episodios...
es la no diferenciación de contenidos, estrategia metodológica y recurso de instrucción para el alumno con y sin deficiencia visual.

a.2 - **Episodios particulares**: hablan de los espacios de instrucción que contaron apenas con la participación del alumno ciego, es decir, ocurrieron de forma separada y simultánea a la clase de los alumnos videntes. Una característica central de esos episodios es la diferenciación, en comparación metodológicas empleadas y del contenido o de su abordaje.

b) **Nivel de interactividad: discurso interactivo e discurso no-interactivo**: de acuerdo con Mortimer y Scott (2002) la diferenciación entre los discursos interactivo y no-interactivo ocurre por la identificación de la cantidad de “voces” que participan de una determinada relación discursiva. Ejemplificando, si en una clase solamente es el profesor quien habla, el discurso se dice no-interactivo, mientras que si durante la clase, existe la participación de los alumnos (expresión de dudas, preguntas, comentarios, etc.) el discurso se dice interactivo.

Por lo tanto, el contexto es definido por la relación:

\[\text{[espacio de instrucción]} + \text{[nivel de interactividad]} \]

En lo que sigue, con el apoyo de categorías de análisis, las clases de dificultades y viabilidades identificadas serán analizadas. En tal análisis, serán enfocadas, en primer lugar, aquellas presentes en las dificultades y viabilidades, y posteriormente, las identificadas en las dificultades o viabilidades.

5 – Descripción de los datos

5.1 - **Clases que representan dificultad y posibilidad para la inclusión del alumno con deficiencia visual.**

5.1.1 - **Dificultad de comunicación**: fueron identificados 97 momentos en que ocurrieron dificultades de comunicación entre los licenciandos y el alumno ciego, dificultades agrupadas en función de siete lenguajes. Esos lenguajes se constituyeron en razón de las siguientes estructuras empíricas: (a) estructuras fundamentales: auditiva y visual independientes, fundamental auditiva y fundamental visual; (b) estructura mixta: audiovisual interdependiente.

En relación al aspecto semántico-sensorial, los significados abordados estuvieron relacionados a dos estructuras.
a) Significado vinculado a las representaciones visuales, ejemplos: registro visual de trayectoria, registro visual del valor de la velocidad de la luz \((3 \times 10^8 \text{ m/s})\), de la masa del electrón \((9,1 \times 10^{-31} \text{ kg})\) y de la carga elemental \((1,6 \times 10^{-19} \text{ C})\), registro visual de la contracción del espacio, registros visuales de relaciones matemáticas (velocidad, espacio y tiempo, ecuación del espacio) relativista, ecuación del tiempo relativista, ecuación de la energía cuantizada, ecuación para la cantidad de movimiento lineal del fotón, ecuación de Einstein para la energía, ecuaciones del principio de incertidumbre), registro visual de la trayectoria de la luz en diferentes referenciales, registro visual de los ángulos formados por la luz en diferentes referenciales, registro visual de la deformación espacio tiempo, registro visual del experimento del efecto fotoeléctrico, gráficos visuales de las explicaciones clásicas y cuánticas del efecto fotoeléctrico, registros visuales de onda y partícula, registro visual de orbital, cálculo de la longitud de onda de una bola de béisbol, registro visual de un elemento químico (posición de los valores de número atómico y número de masa), registro visual del experimento de Rutherford, registro visual del patrón de desvío sufridos por los rayos alfa, beta y gama, registro visual del comportamiento de la partícula alfa al incidir contra una placa de oro, etc.

b) Significado indisociable de representaciones visuales, ejemplos: tubo de rayos catódicos (formación de imagen debido a la incidencia de electrones), formación de imagen de los huesos debido a los rayos X, franjas claras y oscuras formadas en la pantalla debido a la interferencia constructiva y destructiva de la luz, idea de colores, idea de transparente y opaco, fotografía a color y en blanco y negro, cinema a color y en blanco y negro, fosforescencia, sombras.

Por lo tanto, los siete lenguajes generadores de dificultad comunicativa fueron los siguientes: (a) audiovisual interdependiente/significado vinculado a las representaciones visuales (66%); (b) auditiva y visual independientes/significado vinculado a las representaciones visuales (10,3%); (c) fundamental auditiva/significado indisociable de representaciones visuales (7,2%); (d) fundamental auditiva/significado indisociable de representaciones visuales (6,2%); (e) audiovisual interdependiente/significado indisociable de representaciones visuales (5,7%); (f) auditiva y visual independientes/significado indisociable de representaciones visuales (4,1%); y (g) fundamental visual/significado vinculado a las representaciones visuales (1,1%)

En seguida, serán presentadas características importantes de los lenguajes generadores de dificultad comunicativa: (a) presencia mayoritaria de dificultades relacionadas a la estructura empírica audiovisual interdependiente; (b) presencia mayoritaria de dificultades relacionadas a
los significados vinculados a las representaciones visuales; (c) la relación: episodio no-interactivo/lenguaje de estructura empírica audiovisual interdependiente se mostró significativa para el conjunto de dificultades; (d) significados indisociables de representaciones visuales participaron de forma minoritaria en el conjunto de dificultades comunicativas; (e) ocurrencia discreta de dificultades en episodios particulares; (f) episodios comunes a todos los alumnos se caracterizan principalmente por el empleo de lenguaje de estructura empírica audiovisual interdependiente; (g) la interactividad se mostró como un factor minoritario de dificultades; (h) verificación discreta de dificultades provenientes de la relación: interactividad/lenguajes de estructuras empíricas auditivas y visual independientes y fundamental auditiva.

5.1.2 – Viabilidades de comunicación: fueron identificados 222 momentos en que ocurrieron viabilidades de comunicación entre los licenciandos y el alumno (B), viabilidades agrupadas en razón de diez lenguajes.

Esos lenguajes se organizaron en función de las siguientes estructuras empíricas: (a) estructuras fundamentales: auditiva y visual independientes y fundamental auditiva; y (b) estructuras mixta táctil-auditiva interdependiente. En relación al aspecto semántico-sensorial, los significados vehiculados estuvieron relacionados a cuatro estructuras.

a) Significado vinculado a las representaciones no-visorales, ejemplos: deformación del espacio, registro táctil de la trayectoria de los objetos, diferencia entre los movimientos de una partícula y de una onda, aceleración relativa entre dos objetos, idea de electrón como partícula, registro táctil de los fenómenos ondulatorios: interferencias constructiva y destructiva (foto 1), registro táctil de la sub capa P del átomo cuántico (foto 2), comportamiento ondulatorio del electrón, idea de protón y neutrón como partícula, número atómico, composición del núcleo atómico (protones y neutrones), idea de isótopos (átomos con el mismo número de protones y diferente número de neutrones), bombardeo del núcleo atómico por neutrones (foto 3), idea de fotón como partícula, dualidad onda partícula para la luz, efecto fotoeléctrico (idea de la colisión entre fotones y electrones), modelo atómico de Thomson (analogía del pudín de pasas), modelo atómico de Rutherford (analogía con el sistema planetario – foto 4), idea de velocidad relativa en la física de Galileo, idea de luz como onda, principio de incertidumbre, gráficos de las explicaciones clásicas y cuánticas del efecto fotoeléctrico (foto 5), modelo atómico de Bohr, curva de decaimiento del radio (foto 6)

b) Significado de la relacionabilidad sensorial secundaria, ejemplos: fecha del año internacional de la física, los estudios de Young, aplicaciones tecnológicas de los rayos X, fecha
del descubrimiento de los rayos X, fecha y lugar del nacimiento de Einstein, curiosidades de la infancia de Einstein, fecha de la formación de Einstein, fechas de las principales publicaciones de Einstein, fecha del recibimiento del premio Nobel por Einstein, la importancia de Einstein para la segunda guerra mundial, periodo en que las teorías de Newton no eran cuestionadas, periodo del surgimiento de la relatividad general y restricta, nombre de quien identificó y bautizó el efecto Fotoeléctrico (Hertz), trabajo que le dio a Einstein el premio Nobel, año y descubridor (Becquerel) de la radiactividad, metales que Becquerel trabajó los materiales que Pierre y Marie Curie trabajaron (polonio y radio), nombres importantes en la historia de la ciencia, afirmación de Lorde Kelvin sobre la física (que ella no tenía nada más para descubrir), informaciones sobre la historiografía de la ciencia, impacto de la tecnología en el desarrollo de la ciencia, importancia actualmente otorgada por los historiadores de la ciencia a los aspectos sociales, nombres de científicos y fecha del inicio de la física cuántica.

c) Significado indisociable de representaciones no visuales, ejemplos: fuerza, peso, fuerza de atracción y repulsión eléctrica, fuerza nuclear, fuerza gravitacional, calor.

d) Significado sin relación sensorial, ejemplos: invariancia de la velocidad de la luz en relación a cualquier referencial, energía, tiempo, carga eléctrica, asociación entre colores y frecuencias del infrarrojo y del ultravioleta, dilatación del tiempo, campo gravitacional eléctrico y magnético.

Por lo tanto, los diez lenguajes generadores de viabilidades comunicativas fueron los siguientes: (a) auditiva y visual independientes/significado de relacionabilidad sensorial secundaria (20,7%); (b) táctil-auditiva interdependiente/significado vinculado a las representaciones no visuales (19,4%); (c) fundamental auditiva/significado vinculado a las representaciones no visuales (17,1%); (d) auditiva y visual independientes/significado vinculado a las representaciones no visuales (16,6%); (e) fundamental auditiva/significado de relacionabilidad sensorial secundaria (10,4%); (f) auditiva y visual independientes/significado indisociable de representaciones no visuales (5,8%); (g) fundamental auditiva/significado sin relación sensorial (3,6%); (h) auditiva y visual independientes/significado sin relación sensorial (3,6%); (i) fundamental auditiva/significado indisociable de representaciones no visuales (1,8%); y (j) táctil-auditiva interdependiente/significado indisociable de representaciones no visuales (0,9%).

En seguida presentaremos las características mas notorias de los lenguajes generadores de posibilidad comunicativa: (a) predominancia de viabilidades en los contextos comunicativos
comunes a todos los estudiantes; (b) predominancia, en los contextos comunes a todos los estudiantes, del uso de las estructuras empíricas: auditiva y visual independientes y fundamental auditiva; (c) predominancia de viabilidades relacionadas, respectivamente, a los significados vinculados a las representaciones no visuales y de relacionabilidad sensorial secundaria; (d) el elemento “no-interactividad” se mostró adecuado al ofrecimiento de significados de relacionabilidad sensorial secundaria y vinculados a las representaciones no visuales; (e) los elementos “episodios particulares” y “interactividad” facilitaron el uso de lenguajes de estructura empírica táctil-auditiva interdependiente, así como, la circulación de significados vinculados a las representaciones no visuales; (f) presencia minoritaria de viabilidades relacionadas a la circulación de los significados sin relación sensorial e indisociables de representaciones no visuales; (g) significativa relación entre el elemento “interactividad” y el uso del lenguaje de estructura empírica fundamental auditiva; (h) no presencia de la relación: posibilidad/estructura empírica audiovisual interdependiente.

5.2 – Clases que representan dificultad o posibilidad para la inclusión del estudiante con deficiencia visual.

5.2.1 - Dificultades

Dificultad de segregación: fue identificada en trece ocasiones.

Explicación: se trata de la creación, al interior de la clase, de ambientes segregativos de enseñanza. Esos ambientes contaron solamente con la participación del alumno (B) y de un licenciando colaborador. Los referidos ambientes fueron constituidos debido a las dificultades oriundas de la clase principal, es decir, aquella ofrecida para todos los alumnos por el licenciando responsable.

Se dio principalmente durante episodios de enseñanza que no favorecieron la interacción docente/estudiante, lo cual representa, para efectos de participación efectiva, una diferencia excluyente con relación al tratamiento educativo de los alumnos videntes. En los ambientes segregativos, temas discutidos durante la clase principal eran algunas veces suprimidos o simplificados, es decir, se diferenciaron de aquellos trabajados por todos los alumnos. Observamos también, que en tales ambientes, los diálogos ocurrieron en voz baja, lo que explicita su característica de “incomodo” para la clase principal. La Tabla 2 presenta un panorama sintético de la dificultad de segregación.
Tabla 2 - Síntesis de las actividades segregativas y principales realizadas simultáneamente

<table>
<thead>
<tr>
<th>Tema: actividad segregativa</th>
<th>Tema: actividad principal</th>
<th>Recurso instruccional: actividad segregativa</th>
<th>Recurso instruccional: actividad principal</th>
<th>Inter-actividad: actividad segregativa</th>
<th>Inter-actividad: actividad principal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actividad 1: trayectoria de la partícula e interferencia de ondas</td>
<td>Ondas no tienen masa</td>
<td>Maquetas táctiles (fotos 1 y 7)</td>
<td>Proyector Multimedia</td>
<td>Interactivo</td>
<td>No interactivo</td>
</tr>
<tr>
<td>Actividad 2: rayos catódicos y X</td>
<td>Aspectos históricos de la física</td>
<td>No utilizado</td>
<td>Proyector Multimedia</td>
<td>No-interactivo</td>
<td>No interactivo</td>
</tr>
<tr>
<td>Actividad 3: explicación del modelo atómico de Rutherford</td>
<td>Explicación de algunos experimentos del descubrimiento de la radioactividad</td>
<td>Maqueta táctil (foto 4)</td>
<td>Proyector Multimedia</td>
<td>Interactivo</td>
<td>No interactivo</td>
</tr>
<tr>
<td>Actividad 4: efecto fotoeléctrico</td>
<td>Descubrimiento del efecto Fotoeléctrico</td>
<td>Maqueta táctil (foto 10)</td>
<td>Proyector Multimedia</td>
<td>No interactivo</td>
<td>No interactivo</td>
</tr>
<tr>
<td>Actividad 5: gráfico del efecto Fotoeléctrico</td>
<td>Efecto Fotoeléctrico</td>
<td>Maqueta táctil (foto 5)</td>
<td>Proyector Multimedia</td>
<td>Interactivo</td>
<td>No interactivo</td>
</tr>
<tr>
<td>Actividad 6: difracción de la luz, Interferencia constructiva y destructiva</td>
<td>Interferencia constructiva y destructiva</td>
<td>Maqueta táctil (foto 8)</td>
<td>Proyector Multimedia</td>
<td>Interactivo</td>
<td>No interactivo</td>
</tr>
<tr>
<td>Actividad 7: Interferencia constructiva y destructiva de ondas en el agua</td>
<td>Interferencia constructiva y destructiva</td>
<td>Maqueta táctil (foto 1)</td>
<td>Proyector Multimedia</td>
<td>Interactivo</td>
<td>No interactivo</td>
</tr>
<tr>
<td>Actividad 8: carácter dual da luz</td>
<td>Carácter dual dos electrones</td>
<td>No utilizado</td>
<td>Proyector Multimedia</td>
<td>Interactivo</td>
<td>No interactivo</td>
</tr>
<tr>
<td>Actividad 9: velocidad de la onda</td>
<td>Velocidad de la partícula</td>
<td>No utilizado</td>
<td>Proyector Multimedia</td>
<td>Interactivo</td>
<td>No interactivo</td>
</tr>
<tr>
<td>Actividad 10: velocidad de la partícula</td>
<td>Velocidad de la onda</td>
<td>No utilizado</td>
<td>Proyector Multimedia</td>
<td>Interactivo</td>
<td>No interactivo</td>
</tr>
<tr>
<td>Actividad 11: Orbitas atómicas</td>
<td>Principio de incertidumbre</td>
<td>Maqueta táctil (foto 2)</td>
<td>Proyector Multimedia</td>
<td>Interactivo</td>
<td>No interactivo</td>
</tr>
<tr>
<td>Actividad 12: discusión del experimento de Rutherford</td>
<td>Reacción nuclear</td>
<td>Maqueta táctil (foto 9)</td>
<td>Proyector Multimedia</td>
<td>Interactivo</td>
<td>No interactivo</td>
</tr>
<tr>
<td>Actividad 13: decaimiento del radio</td>
<td>Física nuclear</td>
<td>Maqueta táctil (foto 6)</td>
<td>Proyector Multimedia</td>
<td>Interactivo</td>
<td>No interactivo</td>
</tr>
</tbody>
</table>

Atenciones personalizadas, observadas en episodios que preveían tal práctica junto a todos los alumnos, no fueron considerados ambientes segregativos de enseñanza. Esto lleva a decir que la posición adoptada no se opone a la realización de atenciones personalizadas para
cualquier alumno, y si, para aquellos que representan la exclusión en relación al tratamiento educativo de la clase dada.

Dificultad de operaciones matemáticas: fue identificada en seis ocasiones.

Explicación: se refiere a la no participación efectiva del alumno con deficiencia visual en actividades que involucraron el desarrollo de cálculos. Esas actividades fueron realizadas predominantemente en episodios no interactivos y con el uso del lenguaje de estructura empírica audiovisual interdependiente. Se fundamenta en la relación triádica caracterizadora de las operaciones matemáticas, es decir, simultaneidad entre raciocinio, registro del cálculo y su observación. Los cálculos no realizados por el alumno ciego estuvieron relacionados a los siguientes temas: uso de la ecuación de la velocidad media para el cálculo de la dilatación del tiempo, cálculo de la energía de un cuerpo con masa de 1 Kg \(E = mc^2 \), cálculos de las velocidades de ondas y partículas, relación matemática entre momento lineal y longitud de onda, cálculo de la longitud de onda de una bola de Béisbol y cálculo del número de neutrones del elemento hierro.

Dificultad de simulación computacional: fue identificada en tres ocasiones.

Explicación: se refiere a la no participación efectiva del alumno con deficiencia visual en actividades que utilizaron simulaciones computacionales como recurso instruccional. Ese tipo de dificultad estuvo ligado a la proyección demostrativa de situaciones hipotéticas (objetos a velocidades cercanas o iguales a la de la luz, persona en un elevador en caída libre y en una nave espacial y dilatación del espacio), en episodios no interactivos y con el uso del lenguaje de estructura empírica audiovisual interdependiente.

Dificultad de experimentación: fue identificada en una ocasión

Explicación: se refiere a la no participación efectiva del alumno con deficiencia visual en la actividad experimental. Estuvo relacionado con la realización del experimento demostrativo, en episodio no interactivo y con el uso del lenguaje de estructura empírica audiovisual interdependiente. El experimento realizado fue el siguiente: experimento imaginario de
formación espacio tiempo. Cuatro alumnos videntes participaron del experimento. Los materiales utilizados fueron los siguientes: toalla, una manzana e goma de mascar. Forma de realización: (1) los alumnos tomaron la toalla abierta por sus puntas; (2) el licenciando colocó la manzana en el centro de la toalla; (3) se observó la deformación de la toalla; (4) el licenciando colocó las gomas de mascar que se deslizaron hasta encontrar la manzana. La única forma de observación del experimento era visualmente. A partir de allí, se dio la argumentación del licenciando de que así como se deforma la toalla con la presencia de la manzana, el espacio tiempo también se deformaría debido a la presencia de objetos masivos en la tierra.

Dificultad de operación de software: fue identificada en una ocasión.

Explicación: Se refiere a la no participación efectiva del alumno con deficiencia visual en la actividad que uso el CD “Tópicos de Física Moderna” (Machado, 2006). Este software presenta contenidos de física moderna por medio de textos que pueden ser visitados por temas representados con íconos en la pantalla del computador. La variedad de temas permite a los alumnos cierta autonomía en el direccionamiento de los contenidos que pretenden estudiar, ya que, para cada texto visitado, se da una variedad de íconos con temas relacionados al contenido leído, los cuales van apareciendo al lado del texto.

De esta forma, si un alumno esta interactuando en el computador con textos o figuras relacionadas a un determinado tema, y se interesa por otro presentado en la pantalla por medio de los íconos, él puede seleccionar con el Mouse el tema de su interés, y el computador muestra en la pantalla otro texto sobre el tema escogido y ofrece nuevamente al usuario, las opciones de otros temas. Entretanto, como el estudiante (B) es ciego, él no puede leer ni ingresar a los íconos del program. En ese contexto, el referido alumno se encontró en una condición de no operabilidad por medio del programa educativo. Ese tipo de dificultad estaba ligada a la manipulación individual de los aplicativos del mencionado CD, en episodios no interactivos y con el uso del lenguaje de estructura empírica fundamental visual.

5.2.2 - Viabilidades

Viabilidad de uso de materiales:
Explicación: verificada en ocho ocasiones, se refiere al uso, junto a los alumnos videntes, de las maquetas desarrolladas para la enseñanza del alumno con deficiencia visual. Tal uso se dio con el uso del lenguaje de estructura empírica audiovisual interdependiente y en episodios no interactivos. La viabilidad de uso, por tanto, no se aplica directamente a la participación efectiva del alumno con deficiencia visual, y sí, a la posibilidad de usar materiales desarrollados para alumnos con deficiencia, junto con alumnos videntes.

Fueron ocho las maquetas táctiles-visuales utilizadas: (a) trayectoria parabólica de lanzamiento de una pelota (foto 7); (b) interferencia constructiva y destructiva de ondas (foto 1); (c) experimento que evidenció el efecto fotoeléctrico (foto 10); (d) gráficos de las explicaciones clásica y cuántica para el efecto fotoeléctrico (foto 5); (e) difracción e interferencia de ondas (foto 8); (f) modelo atómico de Rutherford (foto 4); (g) experimento de Rutherford (foto 9), y (h) reacción nuclear (foto 3)

Viabilidad de presentación de modelos: fue identificada en dos ocasiones.

Explicación: se refiere a la presentación, por parte del alumno ciego, de modelos explicativos para la atracción de los cuerpos (tema abordado en el contexto de la física moderna). Se dio en episodios interactivos y con el uso de lenguajes de estructura empírica fundamental auditiva. En esos ambientes, los alumnos con y sin deficiencia visual se alternaron como interlocutores. Así, el estudiante ciego tuvo la oportunidad de expresarse. Los modelos presentados por él fueron los siguientes:

a) modelo explicativo para la caída de la manzana: “B: usted suelta la manzana y ella cae, porque la tierra tiende a halar las cosas, la tierra tiende a halar la manzana con la fuerza de la gravedad, y también tiene la fuerza de fricción de frente, entonces usted suelta la manzana y llega un momento en que ella pierde la fuerza y va a caer”

b) atracción entre la tierra y los rayos solares: “A-v: usted entendió lo que él preguntó? B: Porque no es atraído por el Sol? No es imán! La tierra es la que hala los rayos solares cierto? A-v: Usted cree que es así? B: O la tierra hala o él entra libre y espontáneamente, solito, sale de allá y entra en la tierra, o la tierra hala como un imán, hala la radiación”

Obs. La sigla (A-v) indica las declaraciones de uno de los estudiantes sin deficiencia visual.
Viabilidad de pieza teatral (luz: onda o partícula?): fue verificada en una ocasión.

Explicación: se dio en un episodio interactivo y con el uso del lenguaje de estructura empírica fundamental auditiva. Se desarrolló en 4 etapas: 1) licenciandos ejerciendo el papel de actores para presentar un juicio sobre la luz (onda o partícula?). Características generales de la pieza: escenario; tribunal de justicia física. Personajes: juez de la física, abogado clásico, promotor cuántico, reo (la luz), presentador (persona que anuncia la entrada del juez) y cuerpo de jurados (los estudiantes); (2) estudiantes con y sin deficiencia visual se reúnen en grupo para discutir si la luz es culpada o inocente, (3) los grupos presentan el resultado de las discusiones, (4) el juez da el veredicto final. Dado que en el ambiente creado se alterna la función de interlocutor entre los estudiantes con y sin deficiencia visual, el estudiante ciego tuvo condiciones de participación efectiva.

Para sintetizar, presentamos las Tablas 3 y 4, en donde se explicitan las dificultades y viabilidades, así como, sus características intrínsecas más importantes.

Tabla 3 - Clases y características intrínsecas de las dificultades de inclusión.

<table>
<thead>
<tr>
<th>Clase/dificultad/inclusión</th>
<th>Estructura empírica predominante</th>
<th>Estructura semántico-sensorial predominante</th>
<th>Contexto predominante</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comunicación</td>
<td>Audiovisual interdependiente</td>
<td>Significados vinculados a las representaciones visuales</td>
<td>Episodios no interactivos</td>
</tr>
<tr>
<td>Segregación</td>
<td>Audiovisual interdependiente</td>
<td>Significados vinculados a las representaciones visuales</td>
<td>Episodios no interactivos</td>
</tr>
<tr>
<td>Operación matemática</td>
<td>Audiovisual interdependiente</td>
<td>Significados vinculados a las representaciones visuales</td>
<td>Episodios no interactivos</td>
</tr>
<tr>
<td>Simulación computacional</td>
<td>Audiovisual interdependiente</td>
<td>Significados vinculados a las representaciones visuales</td>
<td>Episodios no interactivos</td>
</tr>
<tr>
<td>Operación de software</td>
<td>Fundamental visual</td>
<td>Significado vinculado a las representaciones visuales</td>
<td>Episodios no interactivos</td>
</tr>
<tr>
<td>Experimento</td>
<td>Audiovisual interdependiente</td>
<td>Significado vinculado a las representaciones visuales</td>
<td>Episodios no interactivos</td>
</tr>
</tbody>
</table>
Tabla 4 - Clases e características intrínsecas de las viabilidades de inclusión

<table>
<thead>
<tr>
<th>Naturaleza/viabilidad de inclusión</th>
<th>Estructura empírica predominante</th>
<th>Estructura semántico-sensorial predominante</th>
<th>Contexto predominante</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comunicación</td>
<td>Auditiva y visual independientes, fundamental auditiva</td>
<td>Significados: vinculados a las representaciones no visuales y de relacionabilidad sensorial secundaria.</td>
<td>Episodios no interactivos</td>
</tr>
<tr>
<td>Uso de materiales</td>
<td>Audiovisual interdependiente</td>
<td>Significados vinculados a las representaciones visuales</td>
<td>Episodios no interactivos</td>
</tr>
<tr>
<td>Presentación de modelos</td>
<td>Fundamental auditiva</td>
<td>Significado vinculado a las representaciones visuales</td>
<td>Episodios interactivos</td>
</tr>
<tr>
<td>Pieza teatral</td>
<td>Fundamental auditiva</td>
<td>Significados vinculados a las representaciones visuales</td>
<td>Episodio interactivo</td>
</tr>
</tbody>
</table>

En seguida se presentan las fotografías mencionadas a lo largo del texto.

![Foto 1](izquierda): registro táctil-visual del fenómeno de interferencia de ondas en el agua. Foto 2 (derecha): registro táctil-visual tridimensional de la sub camada P del modelo atómico cuántico.

![Foto 3](izquierda): registro táctil-visual tridimensional de reacción en cadena (reacción nuclear). Foto 4 (derecha): registro táctil-visual tridimensional del modelo atómico de Rutherford.
Foto 5 (izquierda): registro táctil-visual bidimensional de los gráficos: (1) interpretación clásica del efecto Fotoeléctrico (2) interpretación cuántica del efecto Fotoeléctrico. Foto 6 (derecha): registro táctil-visual bidimensional del gráfico del decaimiento del radio con el tiempo.

Foto 7 (izquierda): registro bidimensional de la trayectoria del lanzamiento oblicuo de un objeto. Foto 8 (derecha): registro táctil-visual tridimensional del fenómeno de difracción/interferencia de la luz (difracción de Young).

Foto 9 (izquierda): registro táctil-visual tridimensional del experimento de Rutherford. Foto 10: (derecha): registro táctil-visual bidimensional del experimento que evidenció el efecto fotoeléctrico.
6 – Análisis de datos

Los análisis efectuados indicaron seis clases de dificultades de inclusión. La más frecuente fue la comunicativa, seguida por la segregativa, después la relacionada con las operaciones matemáticas, la clase de simulación computacional y, respectivamente, por las dificultades de experimentación y de operación de software. Esas clases estuvieron relacionadas, principalmente, con episodios no interactivos comunes a todos los estudiantes y al uso de lenguajes visualmente accesibles.

El foco de dificultades comunicativas se centro en la circulación, por medio del lenguaje de estructura empírica audiovisual interdependiente de los significados vinculados a las representaciones visuales. Tales significados no exhiben relación indisociable con la representación visual. Tales significados no exhiben relación indisociable con la representación visual, y por eso, pueden ser registrados y vehiculados por códigos no visuales.

La dificultad “segregación” estuvo directamente relacionada a la creación, en el interior de la clase, de episodios particulares que contaron solo con la participación del estudiante con deficiencia visual. Retomando, en esos episodios los temas trabajados eran distintos de los abordados en la clase principal, que no preveía, en su estructura metodológica, atención personalizada.

La clase de dificultad “operación matemática” es muy importante y también merece ser destacada. Ese tema es poco discutido en la perspectiva de la deficiencia visual, es muy importante en la enseñanza de la física, y representa para estudiantes ciegos o con baja visión, una gran barrera a ser superada.

El problema envuelve la relación tríádica raciocinio/registro/observación de los cálculos. Dado que el deficiente visual, por utilizar el Braille, no observa simultáneamente lo que escribe, la relación es destituida. En Braille, la escritura se da al respaldo del papel. Así, para observar durante un cálculo aquello que está registrando, un deficiente visual necesita retirar el papel de la regleta, palpar lo que registró, voltear el papel a la posición inicial y continuar el proceso. Esto hace que el Braille no sea muy efectivo, en su forma original, como alternativa para la realización de procedimientos matemáticos.

Es necesaria la inversión en el desarrollo de materiales que ofrezcan condiciones para que este tipo de estudiante, de forma simultanea, registre, observe aquello que registra y raciocine.
Un ejemplo de material adecuado a la realización de cálculos por deficientes visuales y aquel desarrollado por Tato (2009)

Se creo un dispositivo táctil (células táctiles) que permiten al estudiante con deficiencia visual la organización y manipulación de números y variables de forma simultánea. Son células con códigos Braille registradas previamente y a disposición del usuario. Este, a su vez, escoge un conjunto de células de acuerdo con sus intereses, las organiza sobre una placa metálica y manipula la posición de las mismas. Para mejor fijación de las piezas, ellas son imantadas.

Las viabilidades de inclusión estuvieron relacionadas con cuatro clases funcionales. La principal también fue la comunicativa, seguida por la de uso de materiales, por las de presentación de modelos y de la pieza teatral. Esas clases, excepto el “uso de materiales”, se caracterizaron por el uso de lenguajes de estructuras empíricas fundamental auditiva, auditiva y visual independientes y táctil-auditiva interdependientes.

En general, las viabilidades comunicacionales estuvieron relacionadas a dos características: (a) circulación de significados vinculados a las representaciones no visuales, y (b) circulación de significados de relacionabilidad secundaria. Significados vinculados a las representaciones no visuales son oriundos de la tentativa de superación de las dificultades provenientes de la circulación de significados vinculados a las representaciones visuales. La circulación de tales significados se apoyó en maquetas o equipos que se facilitaban para ser tocados. De esta forma, esos materiales representaron canales de comunicación entre el estudiante con deficiencia visual, el licenciado y el contenido de física moderna. Por otro lado, significados de relacionabilidad sensorial secundaria se tratan principalmente, de hechos, fechas, acontecimientos cotidianos. Tales significados son potencialmente comunicables por medio de lenguajes de estructuras empíricas fundamental auditiva y auditiva visual independientes, ya que la estructura semántico-sensorial no establece con los significados vehiculados una relación prioritaria.

La clase “uso de materiales”, no representa viabilidad directamente relacionada a los alumnos con deficiencia visual, y si, una posibilidad de inclusión que no debe ser descartada. En otras palabras, tal clase funcional reconoce que los materiales elaborados para alumnos ciegos o con baja visión pueden ser utilizados junto a los alumnos videntes. En las actividades de física moderna, esos materiales fueron utilizados de forma que no viabilizaban la participación simultánea de los alumnos con y sin deficiencia visual. Falta, por tanto, un ajuste de naturaleza metodológica para que todos los alumnos puedan utilizar los mismos materiales.
Finalizando, la viabilidad “pieza teatral” será destacada. Esta pieza fue elaborada por los licenciandos del grupo de física moderna. La pieza involucró licenciandos y estudiantes con y sin deficiencia visual en discusiones y reflexiones, pues, los licenciandos fueron los personajes y los alumnos participaron como cuerpo del jurado posicionándose en contra o a favor de la naturaleza dual de la luz. No obstante, la pieza teatral representó viabilidad, al no vincular la comunicación a los lenguajes inaccesibles al alumno con deficiencia visual. En otras palabras la interactividad generada por la pieza llevó tanto a los videntes como al deficiente visual a la creación de canales adecuados de comunicación acerca de fenómenos relacionados a la naturaleza de la luz.

7 - Consideraciones finales

De la complejidad emergente de este trabajo resulta evidente que existe un camino considerable a ser recorrido en dirección a la igualdad y autonomía relativas al proceso comunicativo como un todo, involucrando la situación de deficiencia visual y la enseñanza de la Física.

Independientemente de la condición de videntes o no videntes, la comprensión de la Física que se enseña en las escuelas es una construcción epistemológica que se desarrolla a partir de procesos comunicativos socialmente compartidos. Las ayudas proporcionadas por equipos, recursos y materiales didácticos solamente poseen valor y eficacia en la medida en que sean utilizados dentro de una concepción educativa que favorezca y que busque responder a las necesidades reales de las personas con algún tipo de deficiencia.

Por otro lado, la enseñanza de la física presupone pre-requisitos esenciales, los cuales pueden ser constituidos por el entorno y por todos aquellos contenidos y métodos en los que las otras materias escolares se yuxtaponen o complementan con la propia Física.

El momento de la formación inicial debe conformar las bases para que el futuro profesor construya los pilares para su práctica docente, consciente y preparado para lidiar con la inminente condición actual de la presencia de personas con deficiencia visual en la escuela.

Es necesario que el profesional de la educación, en cualquier momento de su trayecto (inicial o continuado), o de acuerdo con su competencia técnica (profesor novato o profesor con experiencia) pueda reflexionar sobre esto, buscando siempre identifier, reflexionar y modificar
su actuación pedagógica en dirección a una acción comunicativa, y no solamente en función de
la presencia de personas con deficiencia visual, sino también, pensando en el alumnado como un
todo.

Se investigaciones como esta revelan lagunas en la enseñanza de la Física en relación a
las personas con deficiencia visual, probablemente encontraremos las mismas brechas al
observar las mismas actividades didácticas aplicadas con personas videntes.

Por lo tanto, a modo de conclusión, queda claro que además de la necesidad de traspasar
los muros en relación a las técnicas, metodologías de enseñanza, sistemas y recursos didácticos,
es necesario que haya una resignificación sobre el papel que el lenguaje representa
verdaderamente en relación con la construcción epistemológica para la enseñanza de la Física. Y
esta será una conquista que tendrá su reconocido valor si se teje como una red social de
relaciones, y no de manera solipsista.

Referencias bibliográficas

CAMARGO, Eder Pires de. Ensino de Física e deficiência visual: dez anos de investigações

______ O ensino de Física no contexto da deficiência visual: elaboração e condução de
atividades de ensino de Física para alunos cegos e com baixa visão. 2005. Tese (Doutorado
em Educação) - Faculdade de Educação, Universidade Estadual de Campinas, Campinas,
São Paulo.

______ Um estudo das concepções alternativas sobre repouso e movimento de pessoas cegas.
2000. 218f. Dissertação (Mestrado em educação para a ciência) -- programa de Educação
para a Ciência, Área de Concentração: Ensino de Ciências - Faculdade de Ciências,
Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Bauru, São Paulo.

DIMBLERY, Richard, Burton, Graeme. Mais do que Palavras: Uma Introdução à Teoria da

MACHADO, Daniel Iria. **Construção de conceitos de física moderna e sobre a natureza da ciência com o suporte da hipermídia.** 2006. 300f. Tese (Doutorado em educação para a ciência)- programa de Educação para a Ciência, Área de Concentração: Ensino de Ciências - Faculdade de Ciências, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Bauru, São Paulo.

LA ENSEÑANZA DE LA FÍSICA A TRAVÉS DE MODULOS EXPERIMENTALES.

Ronald Avendaño
Jamith55@yahoo.es
Wilson Lancheros
Wilsonlanchers@yahoo.com
Olga Castiblanco
olcastiblanco@udistrital.edu.co
Fabio Omar Arcos
farcos@udistrital.edu.co

RESUMEN

Esta propuesta de enseñanza y aprendizaje de la Física fue desarrollada en dos instituciones educativas privadas de la ciudad de Bogotá, Colombia, con estudiantes de noveno, décimo e undécimo grado, con edades entre los 13 y 18 años. Se propuso explorar diversas posibilidades de formación a través del trabajo experimental en el aula. Para ello fueron planeados, aplicados y analizados 5 modulos de laboratorio, cada uno de los cuales contempla pequeñas metas que buscan alcanzar un objetivo general. El proceso fue diseñado de acuerdo con las características de temática a desarrollar y las posibilidades de construcción de los montajes. Los módulos trabajan respectivamente conceptos relacionados con mecánica, electricidad, termodinámica, mecánica de fluidos y ondas; por medio de 5 montajes que se titulan: Tractor mecánico, máquina térmica, túnel de viento, generador de Van Der Graff y efecto Doppler. En general constan de; diseño, construcción, funcionamiento del dispositivo y análisis de los conceptos físicos que explican el funcionamiento de cada uno. Pudimos constatar activa participación de los estudiantes en su proceso de aprendizaje, trabajo interdisciplinar y reflexiones acerca de las aplicaciones de la ciencia y la tecnología en la sociedad.

ABSTRACT

This proposal for teaching and learning physics was developed in two private educational institutions in Bogotá, Colombia. With students between 13 and 18 years old. We research different educational possibilities throughout experimental work in the classroom. We planned, applied and analyzed five modules for lab, each one with small goals to achieve an overall objective. The process was designed according to the proper characteristics about physics topics and assembly difficulties. The modules were about; mechanics, electricity, thermodynamics, fluid mechanics and waves, by means of 5 modules that were titled: Tractor mechanic, Heat engine, Wind tunnel, Van Der Graff generator and Doppler effect. In general they consist on; design, construction, operation and explanation. We observed active participation of students on their learning process, interdisciplinary work, and reflections about science and technology impact over the society.

Key words: Experimental Physics module. Meaningful learning. Physics teaching.
Introducción

El presente trabajo tiene como propósito formular el diseño e implementación de cinco módulos de laboratorio: el tractor mecánico, el túnel de viento, el generador de Van de Graff, la máquina térmica y el efecto Doppler. En éstos se aborda el planteamiento de situaciones diversas, que deben ser analizadas por los estudiantes de secundaria en la asignatura de física. La información acá presentada forma parte del trabajo de grado elaborado por Avendaño, R.; Lancheros, W. (2011), en el programa de Licenciatura en Física de una universidad pública de Bogotá.

Los módulos son una metodología que permite llevar al estudiante a generarse incógnitas, las cuales serán resueltas por ellos mismos con asesoría del docente. La corriente de pensamiento pedagógico que empleamos fue fundamentada en el aprendizaje significativo con algunos elementos CTS, de acuerdo con autores como Membiela, I (1997), Azevedo, J.A. (2006), quienes desarrollan un análisis socio histórico de la relación entre ciencia y tecnología, Mitcham, C. (2004) quien analiza cuestiones éticas entre ciencia y tecnología. Esta perspectiva nos llevó a pensar en una metodología que permitiese enseñar contenidos científicos y a la vez prepara al estudiantes en un pensamiento crítico sobre las formas en que se produce ciencia y tecnología con sus respectivos impactos en el desarrollo de la sociedad.

Con base en los resultados observados, podemos concluir que la enseñanza de la física por medio de este material resultó enriquecedora en la medida en que; de una parte conseguimos participación activa de estudiantes, directivos, y colegas docentes, y de otra parte fueron modificadas algunas conductas tradicionales, tales como:

- La forma de proceder del docente en torno a la evaluación, ya que pasó de una simple verificación de contenidos a la constatación del nivel de comprensión con posibilidades de aplicar correctivos apropiados. También en torno a la forma como expone los contenidos, ya que era en su mayoría en dependencia a las preguntas de los estudiantes, como necesidad de comprender la función de las partes del montaje, para poder introducir mejoras, obviamente con algunas sesiones de exposición para todo el grupo a fin de optimizar el tiempo y llegar a algunas conclusiones.
- La actitud de los estudiantes, al enfrentarse a la necesidad de actuar de cierta forma independiente del docente, pues los problemas giran en torno a la superación de los modelos elaborados por el profesor. Es importante mencionar que se generó conflicto con algunos estudiantes que se mostraron inconformes al comienzo, al no tener una guía a seguir, pero poco a poco se les fueron presentando las ventajas de este modo de trabajo, y en general se consiguió una actitud de mayor autonomía.
- El factor tiempo de duración de las clases, fue el que más limitaciones introdujo al desarrollo del proceso. Otro factor que entorpeció el proceso fue la falta de instrumentos de laboratorio para cortar, pulir, moldear, pegar, medir, etc., lo cual fue suplido por los profesores.

1. Metodología de investigación

Este trabajo se basa en la línea de pensamiento de autores como Carrascosa, et al (2006), según la cual el aprendizaje de las ciencias se torna significativo en la medida en que el estudiante se identifica con las actividades desarrolladas durante el proceso de enseñanza, para lo cual resulta apropiado el uso de practicas experimentales que superen la simple puesta en práctica de guias preestablecidas. También tomamos autores como Solbes, J.; Vilches, A. (2006) que llaman la atención sobre la importancia de establecer relaciones entre ciencia, tecnología y...
sociedad, en los procesos desarrollados en el aula, tomando en cuenta que se debe evitar caer en meras aplicaciones tecnologicas, olvidando la componente sociocultural, o caer en mirar discusiones sociocientificas olvidando la componente tecnológica. Por tanto, procuramos en el desarrollo de los módulos proponer actividades que llevaran los estudiantes a pensar sobre los conceptos físicos a ser estudiados, los procedimientos para planear y elaborar determinados montajes, y el análisis de las implicaciones sociales e tecnologicas del uso de tales artefactos.

Consideramos que el desarrollo experimental en busca del aprendizaje significativo, implica exigir de los estudiantes análisis y reflexión sobre cada una de las fases de la resolución de un problema, lo cual debe llevarlo a articular sus conocimientos previos al estudio del fenomeno, con los conocimientos a ser construidos. Sin embargo, saber que tipo de preguntas hacer al estudiante, y cuales son los momentos mas apropiados para orientar una determinada reflexión, implica que el profesor se responda previamente una serie de preguntas, con el fin de aumentar su claridad sobre los temas y metodologias a tratar. Preguntas como:

- “Por que el trabajo de laboratorio motiva a los alumnos? ¿Existen formas alternativas de motivarlos?;
- ¿Qué tipo de técnicas de trabajo en el laboratorio de Física, son posibles de ser enseñadas?
- ¿Cómo hacer que el trabajo de laboratorio ayude a los alumnos a comprender mejor los conceptos científicos?
- ¿Cuál es la visión de ciencias que pueden construir los alumnos a partir de la actividad práctica en el laboratorio?

Las respuestas a estas preguntas nos llevaron a concluir que la motivación de los estudiantes se debe inicialmente al cambio de actividad de una clase teórica para una clase práctica, pero tal motivación se puede perder si el proceso mismo de experimentación se hace de forma mecanica y sin mayor profundización en el análisis de los procedimientos, por tanto, es necesario desarrollar el proceso de tal forma que se mantenga el interés. Eso se relaciona con el hecho de que las técnicas de trabajo en el laboratorio deben ser enseñadas con su razón de ser, es decir, acciones como; “montaje del material”, “observación”, “medición”, “toma de datos”, “análisis de los datos”, no son necesariamente procedimiento que ya el estudiante domina, sino que son contenidos que también forman parte de su aprendizaje, y por tanto cada fase debe ser pensada de tal forma que el estudiante tenga cierto margen de decisión y acción, ofreciéndole la posibilidad de cuestionar lo que está haciendo.

Así, la comprensión de los conceptos científicos está asociada a la comprensión del quehacer científico. Si bien, no se podría asegurar que los estudiantes estarian “produciendo ciencia” en una práctica de laboratorio, se puede afirmar, que ellos estan formando su pensamiento para entender la ciencia y sus formas de producción, y estan yendo más allá de la información, en concordancia con la perspectiva de Segura, D. (2002). De tal modo que creemos que es posible modificar la visión de ciencia que usualmente tienen los estudiantes, como un cumulo de conocimientos fijos e inmodificables, y aun mas, imposibles de ser producidos por personas “comunes y corrientes” como lo son los estudiantes. La práctica del laboratorio, entre otras metodologias como el uso da la historia, la epistemología, etc, ofrece la oportunidad de producir visiones de ciencia como formas de concebir el mundo, en donde cada uno tiene sus propias posibilidades. Es así como esta estrategia de trabajo por medio de módulos, busca interligar el trabajo experimental con el aprendizaje de conceptos, leyes y algoritmos con algun significado para los estudiantes, enfatizando en el papel activo que juegan en su proceso formativo.
Para iniciar el proceso de investigación elaboramos un diagnóstico con el fin de detectar los avances y dificultades que presentan los estudiantes en el desarrollo de las prácticas experimentales, lo cual nos ofreció aspectos como: dificultad para manipular equipos, ausencia de elementos conceptuales básicos para el análisis de los fenómenos observados, carencia de vinculación de la práctica con la teoría, y, la no diferenciación de las etapas del desarrollo experimental lo cual les impide analizar datos y resolver situaciones problema generadas a partir de la práctica. Partimos entonces de la problemática de cómo generar mayor aprendizaje significativo a través del uso de prácticas experimentales en diversos tópicos de la Física, para estudiantes de la educación secundaria.

En la planeación de los módulos nos basamos en criterios que permitieran orientar a los estudiantes en un proceso de observación, práctica de construcción de sus propios montajes y análisis de resultados, con el propósito de formar habilidades de pensamiento en los estudiantes tanto para el estudio de conceptos científicos, como de procedimientos e actitudes. Una vez concluida la planeación que contó con algunas prácticas de prueba, se aplicó con los estudiantes, y finalmente se analizaron las experiencias de enseñanza y aprendizaje.

Para la interpretación de resultados se usaron 3 elementos para validar la información, siendo estos: Diario de campo, material visual, encuestas aplicadas a estudiantes y docentes de física antes-después de usar los módulos. Con estos instrumentos se procede a realizar la interpretación de los resultados que estarán de manifiesto en las conclusiones de este artículo.

En este proceso tuvimos en cuenta autores como Castiblanco, O.; Vizcaíno, D. (2008) quienes aportan una reflexión sobre el uso de la experimentación proceso de formación de habilidades de pensamiento, mas que como demostración de hechos, Barberá, O.; Valdes, P. (1996) quienes hacen una revisión sobre las finalidades que ha tenido el trabajo práctico en la enseñanza de las ciencias, mostrando que muchas veces es subestimado, y Arcos, F.; Arevalo, J. (2003) quienes plantean como a partir de las prácticas de laboratorio que se adelantan en la formación de maestros en física se puede establecer los procesos metodológicos como estos se forman.

2. Consideraciones generales sobre los módulos

Un módulo puede caracterizarse básicamente como un conjunto de actividades que desarrolladas en una secuencia determinada permiten alcanzar objetivos propuestos. Para nuestro caso, cada módulo consiste en un conjunto de acciones que buscan ayudar en la construcción de algunos conceptos físicos, y simultáneamente preparar al estudiante en actitudes emprendedoras, que les permitan reconocerse como “porductores” de saberes, y agentes activos dentro de un grupo. Para cada módulo se explicitan: Guía de construcción dirigida al docente, título, objetivo, conceptos físicos que soportan el montaje experimental, modo de evaluación y modo de trabajo. Donde la secuencia de actividades obedece a los procesos de; diseño de montajes, construcción, e interpretación de resultados.

a. Diseño. El docente elabora una versión del montaje y lo presenta a los estudiantes, explicitando los problemas que tuvo en el proceso de construcción y la puesta a prueba. La actividad de los estudiantes consiste en analizar las partes que conforman cada montaje experimental y comprender su funcionamiento, a fin de planear el diseño de su propio montaje, mejorando los problemas relatados por el docente, y también aportando nuevos elementos si es el caso, siempre que se conserve la esencia del montaje inicial.
b. **Construcción.** En esta etapa el docente asesora y orienta la consecución de materiales, y procedimiento de elaboración, pero son los estudiantes quienes construyen y resuelven sus problemas de forma sistemática, hasta conseguir presentarlo y explicarlo ante el curso, en aspectos como; funcionamiento, problemas encontrados y resueltos, variábles y parámetros para desarrollar una práctica de laboratorio. La presentación oral va acompañada de un informe escrito detallando los aspectos cualitativos y cuantitativos del proceso.

c. **Interpretación de resultados.** El docente se enfoca en relacionar los conceptos físicos implícitos en la explicación del montaje, con los procedimientos de elaboración del montaje, y los procesos de observación, medición, toma de datos y análisis de datos, para crear la necesidad del uso de los algoritmos que permiten probar sistemáticamente el funcionamiento del montaje. Los estudiantes, deben participar del análisis; aportando sus propias experiencias, ideas, preconcepciones y confrontando sus hipótesis con las diferentes teorías, leyes físicas, aplicaciones tecnológicas, e impacto en la sociedad.

3. **Módulos**

Una de las características especiales de nuestra propuesta es que el estudiante no recibe una guía de construcción del montaje, sino que es a partir de la observación y análisis del montaje presentado por el docente, que deberá crear su propia guía de construcción y criterios de análisis. Así, para orientar a los estudiantes en los modos de observación, análisis, preparación del material y puesta a prueba, se desarrollan etapas, cada una de las cuales tiene un objetivo, una descripción de la física involucrada en el problema, un problema específico a ser resuelto por el estudiante, un modo de trabajo en grupo, y un modo de evaluación. Dadas las limitaciones de extensión del artículo, presentaremos entonces, solamente la guía de construcción del montaje (para el docente), y los problemas a resolver por parte del estudiante en cada etapa.

Módulo 1. Tractor Mecánico.

(a) Carrete y listones del tractor. (b) Tractor mecánico.

Materiales: Caucho, Carrete plástico, dos listones plásticos o de Madera.

Montaje:
- Realizar un diagnóstico de la relación que deben poseer los materiales descritos y como deben ser sus características para garantizar un mejor funcionamiento del dispositivo.
- Atravesar el caucho por el centro del carrete de hilo para atarlo a uno de sus extremos, donde se encuentra el listón pequeño que debe estar fijo a uno de los lados, para que en el otro se ajuste al más largo.
- Halar el caucho y atarlo al listón más grande, ajustándolo con firmeza, permitiendo que éste pueda rotar con facilidad minimizando la fricción.
- Establecer los parámetros que hacen que el dispositivo mecánico posea movimiento.
- Modificar o agregar partes con el fin de mejorar el funcionamiento del tractor.

Problemas a resolver:

Este módulo consta de cuatro etapas. Los objetivos son respectivamente: establecer los parámetros de diseño de la estructura del tractor mecánico; diseñar la estructura general del tractor mecánico a partir del montaje planteado por el docente; construir el tractor mecánico e tomar datos analizando el comportamiento de las variables; analizar los datos a partir de las teorías físicas. La evaluación contiene aspectos cualitativos y cuantitativos una tabla de parámetros que fue elaborada para categorizar el desempeño de los estudiantes en: superior, alto, básico, y bajo. Las dinámicas de trabajo en grupo buscaban principalmente fortalecer la observación, el análisis, los diseños y la descripción de resultados.

![Figura 2](image)

(a) (b) (c)

Figura 2. (a) Notas de un estudiante sobre la explicación, (b) Planos de un grupo de estudiantes, (c) Versión de tractor mecánico de un grupo de estudiantes.

El método de evaluación tuvo en general los mismos criterios para los cinco módulos, variando obviamente en el contenido tratado y la extensión de los procesos según el caso. La evaluación contó con una valoración cualitativa en una escala de 1 a 10, en relación con la observación de factores como; ingenio para mejorar aspectos relevantes, el tipo de gráficas y representaciones para la descripción y explicación, el análisis y las conclusiones sobre el funcionamiento. Este proceso se organizó de tal modo que pudiera ofrecer una valoración cuantitativa, al diseñar una tabla de indicadores de avance en cada una de las etapas, datos que presentamos en la Tabla1, organizada para la etapa 1.

Los problemas (P) a resolver para cada uno de las cuatro etapas fueron:

P1: Diseñar la forma que debe tener la estructura del tractor (carrete), considerando las variables que pueden interferir en el movimiento de rotación del mismo, tales como; forma del cilindro, características de las superficies en contacto con el cilindro, relación entre tamaño y peso.
Tabla 1. Cuadro de criterios de evaluación para la etapa 1.

<table>
<thead>
<tr>
<th>Desempeño</th>
<th>Superior (9-10)</th>
<th>Alto (8-9)</th>
<th>Básico (6-8)</th>
<th>Bajo (1-5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analizar y comprender las diferentes partes que conforman el carrete del tractor, junto con su relación al funcionamiento del mismo.</td>
<td>Analizo, distingo y comprendo las partes que conforman el rodillo del tractor, junto con su relación al funcionamiento del mismo.</td>
<td>Presento algún tipo de dificultad menor a la hora de analizar, distinguiendo y comprendiendo las partes que conforman el rodillo del tractor, junto con su relación al funcionamiento del mismo.</td>
<td>Analizo de forma parcial el funcionamiento del rodillo, generando dificultades en la comprensión del mismo.</td>
<td>Presento dificultades en el análisis de las partes que conforman el tractor, dificultando en gran medida la comprensión del mismo.</td>
</tr>
<tr>
<td>Proponer diseños alternativos al del docente, siendo estos lo más novedosos y eficientes.</td>
<td>Propongo diseños alternativos al del docente para la construcción de un rodillo más eficiente en el movimiento.</td>
<td>Propongo diseños alternativos, pero sin mayor análisis y mejoras con respecto al planteado por el docente.</td>
<td>Propongo diseños sin un análisis profundo y poco elaborado.</td>
<td>Se me dificulta analizar el diseño propuesto por el docente, impidiendo generar diseños propios o mejoras al prototipo planteado.</td>
</tr>
<tr>
<td>Consigno de forma escrita todo el análisis realizado al montaje, junto las conclusiones.</td>
<td>Consigno de forma apropiada el análisis realizado al montaje, junto las conclusiones.</td>
<td>Consigno parcialmente el análisis realizado, junto con las conclusiones.</td>
<td>Consigno de forma parcial, con errores en la redacción y conclusiones insuficientes.</td>
<td>Presento dificultades grandes a la hora de redactar ideas frente al montaje y las conclusiones.</td>
</tr>
</tbody>
</table>

P2: Diseñar el tractor con una adecuada relación entre los accesorios y el carrete, estableciendo una relación apropiada entre energía suministrada al tractor y el trabajo que este genera. Superar la propuesta de montaje presentado por el docente, Analizando las características del elástico y su relación con el tractor, y las características de los listones con su tamaño y peso.

P3: Realizar medidas y toma de datos a partir de las variables que participan en el funcionamiento del tractor mecánico, siendo estas: Tiempo, posición, trayectoria, dimensiones del dispositivo, masa, número de vueltas realizadas por el carrete, número de vueltas empleadas en deformar el elástico.

P4: Analizar, relacionar y comprender los datos obtenidos en la etapa anterior con los diferentes conceptos físicos que participan en la explicación del funcionamiento del tractor mecánico. Este trabajo se fundamentara en el análisis de cada parte del sistema, junto con el modelo teórico que permite dar una explicación, utilizando adecuadamente diversos modos de representación, tales como: gráficas, algoritmos, aplicaciones, descripciones.

Módulo 2. Máquina térmica.

Materiales: Lata de soda, listones y láminas de balso, una puntilla, papel aluminio, alambre, una cuerda delgada, tubos huecos muy delgados (una antena de radio o televisión), silicona resistente al calor, mechero, una polea, una masa.
Montaje:

- Perfore un orificio en cada lado de la lata, a la mitad de la altura de la lata y extraiga el contenido por los orificios.
- En cada uno de los orificios coloque los pequeños tubos, estos tubos deben estar en forma de L y dispuestos como lo muestra la figura.
- Pegue la puntilla en la parte superior de la lata, usando adhesivo resistente al calor.
- Construya el armazón principal de tal forma que en la lamina de la parte superior se pueda sostener la lata permitiéndole girar, y también en el otro extremo de la lamina debe poderse sujetar un polea fija, por donde pasará la cuerda atada al eje de rotación de la lata y a la masa que subirá o bajaría como efecto de la rotación de la lata. En la mitad de la estructura debe quedar un hueco en forma de circunferencia con el mismo diámetro de la lata, y en la base se debe poder colocar un mechero.

Problemas a resolver:

Este módulo consta de cuatro etapas. Los objetivos son respectivamente: diseño de la caldera, diseño del soporte de la caldera, construcción de la máquina térmica con toma de datos y, sistematización y análisis de la información

Las dinámicas de trabajo en grupo buscaban principalmente fortalecer el trabajo en equipo, la observación, el análisis, los diseños y la descripción de resultados, los cuales ofrecen el material necesario para registrar el proceso y emitir juicios de valoración.
Figura 4. a) Estudiantes planeando la máquina térmica. b) Propuesta de un grupo para la estructura de la máquina térmica.

Los problemas (P) a resolver en las cuatro etapas fueron:

P1: Diseñar una caldera con base a la información proporcionada por el docente en la presentación del montaje, buscando la mejora de los defectos, considerando condiciones como: la caldera debe soportar altas temperaturas y no presentar fugas de vapor, se debe disminuir la pérdida de energía térmica entre la caldera y la fuente de calor; el diámetro y tamaño de los tubos de escape del vapor deben garantizar la rotación de la caldera.

P2: Planear la construcción del soporte de la caldera garantizando que cumpla con la función indicada, la cual es generar trabajo para levantar un objeto, considerando condiciones como; la estructura debe ser estable y no vibrar demasiado con el movimiento de la caldera, los materiales utilizados deben ser eficientes, disminuir la fricción del mecanismo del eje de rotación y movimiento transmitido.

P3: Con base a los planos realizados en las etapas anteriores, construir la máquina térmica logrando levantar un peso, una distancia determinada, o acoplando algún otro mecanismo en el que se aproveche la energía térmica de la caldera, buscando siempre la mayor eficiencia. Para la toma de datos, deben considerar aspectos como: Tiempo que tarda la caldera en empezar a moverse; cantidad de agua suministrada a la máquina térmica; tiempo que tarda en evaporarse el agua; masa levantada por la máquina, dimensiones de la máquina térmica; número de revoluciones por minuto; masa de la caldera (con los dos escapes) sin agua; tipo de combustible empleado por la máquina; temperatura en la caldera (de ser posible).

P4: Explicar el funcionamiento de la máquina térmica construida por cada grupo de trabajo, con cálculos numéricos y predicciones que se fundamentan en los datos obtenidos en la etapa anterior, basados en la explicaciones del profesor durante y al final del proceso, complementado con sus propias búsquedas de información.

Módulo tres: Efecto Doppler

Materiales: Superficie transparente de 80cm x 40cm o más grande con una profundidad aproximada de 5 cm (vidrio o acrílico), lámpara de 120 W, motor eléctrico, percutor (fuente generadora de ondas), listones de balsó. 4 tubos PVC de 1 pulgada, 50 cm de largo cada uno, 6 ruedas de 3cm diámetro, 3 metros de cuerda.
Montaje
- Adaptar la cubeta de ondas de acuerdo con los materiales (quitar el filo, evitar fugas de agua, garantizar estabilidad).
- Unir los tubos plásticos de tal forma que funcionen como soporte a la cubeta.
- Instalar el motor eléctrico en una de las paredes de la cubeta, de tal forma que al comenzar a girar el eje y por medio de una polea acoplada, este pueda enrollar la cuerda que hala el soporte móvil.
- Construir el soporte para el percutor, el cual debe tener acopladas las ruedas en la parte inferior, con el fin de permitir el movimiento rectilíneo del percutor.
- Colocar la lámpara sobre la cubeta, utilizando un soporte adicional fijo, de manera que ilumine toda la superficie de la cubeta.
- Acondicionar el soporte del percutor de modo que se pueda desplazar por encima de la cubeta de ondas.
- Atar con la cuerda el percutor al eje del motor, garantizando que el motor hale el percutor en línea recta.

Problemas a resolver:
Este módulo tiene como objetivo observar el comportamiento de las ondas cuando la fuente generadora de ondas se mueve con velocidad constante. Se desarrolla mediante cuatro etapas: diseño de la cubeta de ondas; diseño de los accesorios para la cubeta de ondas; construcción de la cubeta de ondas; análisis de los fenómenos observados.

La evaluación de los estudiantes tiene un proceso semejante a los módulos anteriormente expuestos. Enfatizando en esta ocasión sobre el registro de todas las observaciones hechas, por medio de descripciones y representaciones.
Los problemas (P) a resolver en las cuatro etapas son:

P1: Diseñar la caja de la cubeta de ondas, buscando que presente características adecuadas para observar el fenómeno en cuestión (efecto Doppler). Los estudiantes deben fundamentar su trabajo en las observaciones dadas por el docente en la introducción y en sus propias búsquedas.

P2: En los grupos establecidos en la primera etapa por parte de los estudiantes, deben realizar el diseño de los accesorios de la cubeta de ondas y estudiar la posibilidad de realizar mejoras al mismo. Los estudiantes pueden cambiar el diseño radicalmente, siempre que se mantenga la función fundamental de permitir observar el efecto Doppler. Para ello deben tener en cuenta aspectos como: características del percutor (generador de ondas), soporte para el percutor, ya que este debe ser móvil y no interferir con la visión sobre la superficie del agua, el movimiento del percutor debe ser un movimiento con velocidad constante.

P3: Resolver inconvenientes técnicos que puedan afectar el funcionamiento de la cubeta de ondas o implementar mejoras para la misma. Una vez construida la cubeta de ondas y funcionando de forma adecuada, generando el efecto Doppler, se procede a realizar la toma de datos y apuntes considerando parámetros como: número de veces que el percutor golpea el agua por unidad de tiempo; tiempo aproximado que las ondas tardan en ir de un extremo de la cubeta a otro; forma que presentan las perturbaciones en el agua; efectos del movimiento del percutor.

P4: Analizar y contextualizar los fenómenos observados con los conceptos relacionados al efecto Doppler, junto con las implicaciones de estos fenómenos en la vida diaria de los estudiantes.
Figura 7. a) Garrafas plásticas con cortes transversales. b) filtro (rejilla) de cartón paja. c) Ventilador. d) Acople de rejilla y ventilador a la garrafa mas grande.

Figura 8. a) Soporte para túnel de viento hecho con caja de cartón. b) Soporte acoplado al túnel de viento. c) Esquema del flujo de viento a ser producido con máquina de huma acoplada para visualizar las corrientes. d) Dimensiones del túnel de viento.

Materiales:

1 Botella plástica de gaseosa de dos litros, 2 botellas plásticas tamaño personal cada una, 1 Ventilador, 1 caja de cartón, 1/4 de cartón paja, 1 Fuente (suministro de energía eléctrica al ventilador),1 barita de incienso, Hilaza de lana o hilo, Silicona en barra o líquida, Pistola para silicona, máquina de humo.

Montaje:

- Limpia las botellas de cualquier elemento que impida la visualización del interior de las mismas.
- realizar un corte en la parte superior e inferior de las dos botellas, de tal modo que el diámetro de la parte superior de la botella grande sea igual al diámetro de la parte inferior de la botella pequeña.
- Acoplar las dos botellas con silicona según indica la Figura, evitando que queden fugas de aire por la unión.
- Construir un filtro con cartón paja en forma de rejilla, ver figura. El filtro debe ocupar todo el diámetro de la botella grande en su parte más ancha.
- Asegurar el ventilador dejando fuera del túnel cables que suministren la corriente eléctrica, evitando fugas de aire.
- Construir un soporte para sostener el túnel de viento, cuidando que mantenga la estabilidad al momento de accionar el ventilador.

Problemas a resolver:

Este módulo consta de seis etapas: 1. Diseño del túnel de viento; 2. Diseño soporte túnel de viento; 2. análisis al ventilador; 3. filtro para el ventilador; 4. construcción del túnel de viento; 5. sistematización de los datos; 6. Resultados.

Siguiendo los mismos criterios de evaluación anteriormente descritos, enfatizamos en que la evaluación es un proceso constante que busca permitir al estudiante mejorar su aprendizaje de los conceptos trabajados en la experiencia, y por tanto cada problema a resolver es evaluado tanto en aspectos procedimentales, como actitudinales y técnico-científicos.

![Figura 9. Propuesta de Túnel de viento por un grupo de estudiantes.](image)

Los problemas (P) a resolver en las seis etapas son:

P1: El modelo presentado por el docente es una herramienta ilustrativa que no necesariamente debe ser reproducida, por el contrario, se debe tratar de mejorar la eficiencia de este o cambiar el diseño radicalmente si es posible, siempre que garantice; visibilidad al interior del túnel, estabilidad del montaje, costos bajos, dispositivo interior que elimine turbulencias y permita observar el flujo laminar, túnel con dos compartimentos de diferente diámetro.

P2: Diseñar el soporte del túnel de viento, considerando aspectos como: uso de materiales reciclables y resistentes; reducción del efecto de vibración producido por el ventilador, garantizando estabilidad.

P3: Analizar las características del ventilador apropiado de acuerdo con criterios como: potencia del ventilador para ser capaz de empujar el fluido (aire) a través del túnel; dimensiones del ventilador para ser adaptado en el soporte y túnel de viento; fuente de suministro de energía eléctrica para el ventilador, la cual debe ser constante y continua; material reciclado.

P4: No es necesario seguir el modelo de filtro presentado por el profesor, siempre que cumpla con la función de generar un flujo continuo y homogéneo que permita observar el flujo laminar en el túnel de viento. Considerando aspectos como; Material reciclado o de bajo costo, transformación de flujo turbulento en flujo laminar, resistente a la acción del ventilador.

P5: Con base en los planos y prototipos planeados y expuestos en las etapas anteriores, construir el túnel de viento. La eficiencia de este túnel de viento depende de los materiales empleados, de la forma en que estos estén dispuestos y de las correcciones que se hagan al dispositivo de acuerdo a la experiencia adquirida durante el desarrollo de cada una de las etapas.
anteriores. Una vez que esté funcionando el túnel de viento, se procede hacer la toma de datos, tomando en cuenta los siguientes parámetros: Dimensiones del túnel de viento (volumen), tiempo que tarda el humo en recorrer el túnel; densidad del aire; relación entre las revoluciones del ventilador y velocidad del viento, velocidad de salida del viento.

P6: Partiendo de los datos tomados en las etapas anteriores y de las hipótesis acerca de los fenómenos observados, confrontar los planteamientos iniciales con las observaciones hechas, buscando aumentar la comprensión de los conceptos físicos de la dinámica de fluidos.

Figura 10. a) 1 Lata de soda sin pintura. b) Tubo de PVC sobre tabla de Madera. c) Disposición interna del sistema de generación de carga. d) Montaje exterior del Generador.

Materiales:
1 lata vacía de soda, 1 pequeño clavo, 1 liga (banda de goma) grande de 1 o 2 cm de ancho y de 6 a 10 cm de largo, 1 tubo de vidrio de 5x20 milímetros apróx., 1 pequeño motor de corriente continua (de un juguete), 1 vaso desechable (o de papel parafinado), 1 pegamento instantáneo, 2 cables de 15 cm de longitud apróx., 2 piezas de tubo de tubería plástica de 3/4 de pulgada y de 5 o 7 cm de longitud, acople de 3/4 para tubería plástica, 1 conector T de 3/4 para tubería plástica, Cinta adhesiva, 1 bloque de Madera (base)

Montaje:
- Quitar toda la pintura a la lata de soda sin producirle deformaciones, y retirar la tapa superior.
- Asegurar el tubo plástico de 6 cm de longitud, sobre el bloque o tabla de madera, con el fin de que sirva como soporte del generador.
- Instalar el motor eléctrico en uno de los lados del conector en T, asegurarlo con la cinta y dejar el eje del motor en la parte interna, adhiriendo el fusible fuertemente en la punta del eje del motor. En esta misma pieza, realizar un orificio en el tubo de tal forma que pueda introducir por el primer cable, para que quede cerca muy cerca de la polea pero sin contacto con la liga.
- En la otra pieza de tubo plástico, acondicionar la puntilla de forma que atraviese el tubo en la parte superior y quede fija, la cual funcionará como eje que sostiene la liga en la parte superior. En esta pieza, realizar un orificio cerca al orificio de la puntilla, con el fin de entrar por ahí el Segundo cable que pasará muy cerca de la banda, pero sin tocarla.
- Acople las tres piezas de tubo plástico, colocando el conector en T entre el tubo de base y el tubo con la puntilla, de tal modo que la liga pueda girar sujetando el eje del motor en la parte inferior y a la puntilla que atraviesa el tubo en la parte superior. La tensión de la liga no debe impedir el movimiento del eje del motor. La longitud de los tubos puede variar en dependencia de la elasticidad de la liga.
- Cortar el vaso a una determinada altura, buscando que el hueco inferior del vaso quede del mismo diámetro del tubo plástico, e introducir el tubo por allí, de modo que al instalar el tubo superior dentro de la lata, el vaso quede justo debajo cubriendo el espacio abierto de la lata.
- Instalar el tubo con la parte superior dentro del contenedor, el cable de la parte superior del tubo se debe poner en contacto con el interior de la lata.

Figura 12. Construcción del generador de van de Graf por parte de las estudiantes.
Problemas a resolver:

El proceso de evaluación obedece a los mismos criterios, evaluando siempre el proceso para resolver cada uno de los problemas que van siendo colocados para los estudiantes, considerando aspectos como: solución de problemas técnicos para el funcionamiento del generador; capacidad de trabajo en equipo para resolver los problemas; coherencia en las formas de explicar el funcionamiento; tomas de datos; informes escritos de todo el proceso, consignando todos los procedimientos, dudas, problemas, errores, y soluciones en las diferentes etapas.

P1: Plantear hipótesis sobre la forma en que se conformará el contenedor metálico, teniendo en cuenta aspectos como: el contenedor deberá tener un agujero en la parte inferior para poder introducir la banda metálica y las escobillas (cables); el contenedor no debe tener huecos ni hendiduras; el contenedor no debe tener pintura que impida la acumulación de carga eléctrica; el contenedor debe tener una forma uniformemente definida sin terminaciones en punta.

P2: Diseñar y construir un soporte aislante que permita ser utilizado para sostener el contenedor metálico. Este debe ser de un material no conductor para que impida la descarga del contenedor metálico y también debe permitir implementar un dispositivo para producir el almacenamiento de carga en el contenedor metálico. Es necesario garantizar la estabilidad del montaje y la no conductividad para optimizar el almacenamiento de carga en el contenedor.

P3: Reconocer y analizar las partes que conforman el dispositivo de carga. Estas son: 1 motor eléctrico de 3 voltios, 1 fusible, 1 puntilla, 1 banda elástica 2 escobillas metálicas El motor debe transferir movimiento a la banda elástica, la cual por fricción con las escobillas generan cargas electrostáticas que son trasladadas por medio de la banda elástica, desde las escobillas hasta la puntilla, las cuales son colectadas por el cable establece el contacto entre la parte superior de la banda y la pared del contenedor. Debe considerar aspectos como: la banda debe estar suficientemente tensionada, pero sin interferir con la rotación del eje del motor eléctrico; la fricción con las escobillas debe ser la suficiente para que la banda genere carga estática y permita el movimiento de la misma; el tamaño debe ser el apropiado para que quepa dentro del soporte plástico.

P4: Con base en los planos diseñados y los prototipos expuestos en las etapas anteriores, realizar el montaje del generador de Van der Graff, el cual debe permitir observar la acumulación de carga estática y la posterior descarga formando un arco.

Es importante resaltar que los estudiantes deben realizar correcciones al dispositivo de acuerdo a la experiencia adquirida durante el desarrollo de cada una de las etapas anteriores y de los contratiempos encontrados durante la construcción, información que deberá ser debidamente registrada. Una vez construido el generador se procede a la toma de datos de variables y parámetros como: tiempo que tarda despedir una chispa (arco) desde que se pone en funcionamiento el generador; voltaje acumulado; condiciones para generar el arco; dimensiones del generador; relación de las revoluciones con que gira la banda elástica y la carga del contenedor metálico.

P5: Comprender los conceptos físicos asociados al funcionamiento del generador, tales como; características de la carga estática, producción de carga eléctrica, aislantes y conductores.
Lo cual se consigue mediante el análisis de las explicaciones previas, durante y después del funcionamiento del montaje, del análisis de la toma de datos y del análisis de las posibles aplicaciones del fenómeno físico en desarrollos tecnológicos.

8. Consideraciones finales

El estudiante juega un papel activo en el proceso del trabajo experimental por medio de los módulos ya que se requiere que trabaje a partir de su experiencia y de los acuerdos a los que puedan llegar en el trabajo grupal, para responder con compromiso a los desafíos colocados por el profesor. Esto significa que la responsabilidad del docente está en diseñar los módulos de trabajo sobre montajes que puedan ser elaborados por los estudiantes estableciendo cuidadosamente los niveles de dificultad, con el fin de que no resulten actividades muy fáciles ni muy difíciles para los estudiantes, de acuerdo con sus condiciones. También el profesor debe proporcionar los elementos teóricos y orientar adecuadamente el proceso, acompañando las dudas, expectativas y desaciertos que puedan tener los estudiantes. De otra parte es fundamental contar con el apoyo logístico del colegio para proporcionar el espacio junto con los equipos básicos de trabajo.

Las explicaciones por parte tanto de profesores como de estudiantes deben ser orientados para alcanzar la mayor profundidad posible, lo cual permitirá generar aprendizaje significativo, y simultáneamente fortalecer habilidades como; expresión, argumentación y trabajo en equipo. Con el trabajo a partir de estos módulos, verificamos que se prestan para relacionar el conocimiento específico de la Física que está siendo estudiada, con conocimientos de otros campos del saber, lo cual hace inevitable que los estudiantes y hasta los profesores de otras áreas quieran establecer vínculos entre diversas ideas. También constatamos que estas actividades permitieron a los estudiantes adquirir responsabilidades relacionadas con el uso racional de los conocimientos científicos aplicados a la tecnología, analizando las implicaciones sociales, ambientales y culturales que puedan tener estos saberes en el desarrollo de una comunidad, pueblo o nación.

Referencias Bibliográficas

AZEVEDO, J. A. Modelos de relaciones entre ciencia y tecnología: Un análisis social e histórico. Revista Eureka sobre enseñanza y divulgación de las ciencias. v.3, No. 2, 2006

SEGURA, D. Conocimiento e información, una diferencia enriquecedora, Publicado en Museolúdica, Bogotá: Museo de la Ciencia y el Juego No 9 (22,34), U. Nacional. 2002

SOLBES, J.; VILCHES, A. Papel de las relaciones entre ciencia, tecnología, sociedad y ambiente en la formación ciudadana. Investigación didáctica. 2004
RESUMEN

En esta investigación, buscamos analizar como se dan y cual es la calidad de las interacciones discursivas durante los procesos de enseñanza y aprendizaje emprendidos en la clase de Ciencias. Para esto, realizamos observaciones de once clases de ciencias de un curso de sexto grado de Educación básica en una escuela pública del municipio de Jaboticabal (São Paulo, Brasil). Los resultados, analizados a la luz del referencial vigotskiano, indican que los procesos interactivos son permeados por situaciones de indisciplina en las cuales la profesora perdía el control frente a la excesiva conversación e desplazamiento de los estudiantes. En este contexto, encontramos una polaridad en las relaciones de interacción del caso estudiado: por un lado, la interacción profesor-alumno se basa en el control frente a la excesiva conversación e desplazamiento de los estudiantes. En este contexto, encontramos una polaridad en las relaciones de interacción del caso estudiado: por un lado, la interacción profesor-alumno se basa en el control del comportamiento de los estudiantes y la imposición de autoridad de la profesora; por otro lado, las interacciones alumno-alumno se manifiestan con un movimiento de resistencia a la figura docente. De este modo, las interacciones alumno-alumno son interpretadas por la profesora como comportamientos indisciplinados que necesitan ser controlados y/o extinguídos.

Palabras-clave: Enseñanza de las Ciencias, Indisciplina, Procesos Interactivos.

ABSTRACT

In the research, we analyze how the discursive interactions occur and their quality. It was considered both interactions: the teacher-student type as well as student-student one during the teaching-learning processes that took place in science classes. We made observations of eleven science lessons in a fifth grade (sixth year) of the elementary school in a public school Jaboticabal (São Paulo, Brazil). The results, which were analyzed based on the vygotskian referential, indicate that the interactive processes are fraught with cases of indiscipline in which the teacher lost control of the situation due to the excessive talking and movement of the students. In this context, we find a polarity in the interactive relations in the studied case: first, the teacher-student interaction is intended to control the behavior of the students and to impose the teacher’s authority; on the other hand, the student-student interactions function as a way to display resistance to the presence of the teacher. Therefore, the student-student interactions are interpreted by the teacher as disruptive behaviors that need to be controlled and/or extinguished.

1 Mestrando do programa de Pós Graduação em Educação para a Ciência. UNESP Bauru. Brasil.
Keywords: Science Teaching; Teachers Formation; History of Science; Teaching Knowledge’s.

Introducción

Los procesos de enseñanza y aprendizaje desarrollados en clases de Ciencias deben favorecer, entre otros aspectos, la discusión y el debate con el objetivo de preparar los estudiantes para expresar su propio conocimiento científico, además de crear situaciones para el desarrollo de la creatividad y de la criticidad de los educandos. En este contexto, resaltamos la importancia de las interacciones discursivas a lo largo de las clases de Ciencias, ya que el hecho de establecer y desarrollar canales de comunicación permiten la negociación de sentidos y significados entre los miembros del grupo (profesor y estudiantes), de modo que ellos compartan el lenguaje de las Ciencias (Lemke, 1997)

Reconociendo el papel que tienen las interacciones discursivas en la apropiación del conocimiento científico, creemos que es deber de la educación en Ciencias proporcionar a los alumnos actividades y/o situaciones para que ellos desarrollen su capacidad comunicativa y aprendan el lenguaje científico (Lemke, 1997)

En estos términos, entre los diversos campos de investigación que se desdoblan sobre las interacciones dialógicas establecidas en situaciones de enseñanza y aprendizaje, adoptamos en este trabajo el referencial socio-histórico. Justificamos nuestra selección por el hecho de que la perspectiva socio-histórica posibilita la comprensión de las interacciones discursivas como favorecedora del desarrollo de las complejas funciones del pensamiento, dado que las interacciones sociales son de extrema importancia para la constitución del individuo (Vygotsky, 1984)

De acuerdo con el referencial socio-histórico, el conocimiento se procesa de modo dinámico, caracterizado por la constante negociación de sentidos y significados, teniendo en cuenta que los sujetos están en constante recreación y reinterpretación de saberes. Así, las interacciones establecidas entre los miembros de mayor experiencia con los de menor experiencia en una determinada cultura es esencial para la aprensión del conocimiento social e históricamente elaborado, ya que, a través de tales interacciones, los saberes son interiorizados por el individuo. Es por medio del proceso de interiorización3 que los niños empiezan a desempeñar sus actividades, primero bajo la orientación y guía de personas con mas experiencias, y, paulatinamente, aprenden a resolverlas de forma independiente. (Vygotsky, 1984; Oliveira, 1992).

Las actividades colectivas orientadas por adultos u otros miembros de mayor experiencia permiten que el niño (o alumno) pueda solucionar problemas que sobrepasen su capacidad de comprensión independiente. De esta manera, la diferencia entre el nivel de las actividades que el niño/alumno puede realizar de manera independiente y aquellas que realiza con la ayuda de otras

3 Segundo Vygotsky (1984), o proceso de interiorización consiste en la reconstrucción interior de una operación desarrollada en el plano externo.
personas, constituye la Zona de Desarrollo Próximo. En este contexto, el aprendizaje precede el desarrollo y le abre camino, posibilitando que el alumno avance cognitivamente, de modo que pueda realizar tales actividades de manera independientemente en el futuro. De este modo, lo que pertenece a la Zona de Desarrollo Próximo hoy podrá formar parte de la Zona de Desarrollo Real del niño/alumno posteriormente (Vygostky, 1984; Vigotsky, 2005).

En este contexto, entendemos que en situaciones de enseñanza-aprendizaje los saberes son desarrollados por la negociación de sentidos y significados entre los involucrados (profesor y alumnos) y, como tales sentidos y significados son cultural y socialmente ofrecidos a los miembros de poca experiencia de la sociedad, es necesario que el estudiante se torne sujeto en el proceso educativo. Por lo tanto, es fundamental que el docente conduzca su práctica pedagógica de tal modo que permita al grupo (profesor y alumnos) trabajar dentro de la Zona de Desarrollo Proximo, con el fin de favorecer en sus alumnos la aprehensión del conocimiento y del lenguaje científico.

En esta perspectiva, el profesor actúa como mediador entre el alumno y el conocimiento científico. Esta mediación ocurre por las intervenciones realizadas dentro de la Zona de Desarrollo Próximo en un ambiente de negociaciones y (re)construcciones de sentidos y significados por todos los participantes de los procesos de enseñanza y aprendizaje (Oliveira, 1992, 1995).

Las interacciones de tipo alumno-alumno también deben ser estimuladas y favorecidas en situaciones educativas, dado que estas pueden contribuir substancialmente para promover el aprendizaje. La heterogeneidad y la pluralidad encontrada en nuestras aulas deben ser comprendidas como fuentes favorecedoras de enseñanza-aprendizaje, puesto que el papel mediador no se restringe solamente a la figura docente, sino que se amplía a todos los involucrados en el proceso educativo (Vygotsky, 1984; Oliveira, 1995).

Com relação à atividade escolar, é interessante destacar que a interação entre os alunos também provoca intervenções no desenvolvimento das crianças. Os grupos de crianças são sempre heterogêneos quanto ao conhecimento adquirido nas diversas áreas e uma criança avançada em determinado assunto pode contribuir para o desenvolvimento das outras. Assim como o adulto, uma criança também pode funcionar como mediadora entre uma e outra criança e às ações e significados estabelecidos como relevantes no interior da cultura (Oliveira, 1995, p. 64).

Al considerar una clase en la cual son favorecidas las interacciones discursivas, creemos que todos los miembros del grupo tendrán la oportunidad de hablar, de elaborar sus hipótesis y, en medio de las negociaciones, llegar a conclusiones que ayuden los alumnos a concebirse como parte de un proceso dinámico de construcción de conocimiento. Radicalizamos el argumento a favor de la interacción porque creemos que el ser humano se constituye como tal a partir del reconocimiento de las diferencias, y uno de los lugares mas apropiados para que eso

4 “Ella es la distancia entre el nivel de desarrollo real, que se acostumbra a determinar a través de la solución independiente de problemas, y el nivel de desarrollo potencial determinado a través de la solución de problemas bajo la orientación de un adulto o en colaboración con compañeros mas capaces” (Vygotsky, 1984, p. 97).
ocurra es la escuela, donde estamos reunidos con diferentes realidades y, en el conjunto de tantas voces, acabamos por acordar sentidos y significados para situaciones y/o fenómenos.

Frente a lo anteriormente expuesto, queremos indagar por: (1) Cuáles son los tipos de interacciones discursivas establecidas durante las clases de Ciencias?; (2) Cual es la calidad de estas interacciones?; (3) Como los profesores comprenden las interacciones dialogicas y su papel en los procesos de enseñanza y aprendizaje?; (4) como son comprendidas las interacciones de tipo alumno-alumno por los docentes?; entre otros.

Ante el reconocimiento de la importancia de las interacciones dialógicas en los procesos de enseñanza-aprendizaje y considerando nuestras indagaciones, nos proponemos, con este trabajo, analizar la frecuencia y la calidad de las interacciones discursivas (de los tipos profesor-alumno y alumno-alumno) establecidas en las clases de ciencias por medio de las observaciones realizadas junto a un curso de grado sexto de Educación básica en una escuela pública del municipio de Jaboticabal – Sao Paulo, Brasil.

Caminos Metodológicos

Este trabajo se enmarca en el ámbito de las perspectivas cualitativas, en la que los esfuerzos de investigación se enfocan en el plano educativo. En consecuencia, los fenómenos que permean el contexto investigado se sitúan en una realidad histórica atravesada por una serie de determinaciones que influyen en la complejidad y la dinámica del contexto estudiado (Lüdke; André, 1986; Bogdan; Biklen, 1994).

Lüdke e André (1986) y Bogdan e Biklen (1994) nos indican cinco características de la investigación cualitativa las cuales son compartidas por esta investigación, a saber: (1) los datos son generados en su ambiente natural y el principal instrumento para la recolección de los mismos es el investigador; (2) los datos son, predominantemente, de naturaleza descriptiva; (3) el enfasis de la investigación se enfoca en el proceso y no en el producto; (4) los significados atribuidos por los sujetos son de extrema importancia para la compresión del contexto estudiado; y, (5) el análisis de los datos recolectados ocurre de modo inductivo.

Consecuentemente con el paradigma cualitativo que orientó esta investigación, adoptamos como instrumento para la colecta de datos la observación. Justificamos nuestra inclinación por esta técnica de toma de datos, ya que, como nos recuerdan Lüdke e André (1986), la observación permite al investigador el contacto directo con el contexto estudiado y con los fenómenos que ocurren en él.

La observación es comúnmente utilizada en investigaciones cualitativas (sea como principal técnica de toma de datos, sea en combinación con otros instrumentos), pues permite al investigador la comprensión de los sentidos y significados que los sujetos atribuyen al contexto en el que esta inmerso. También, es importante destacar que la forma mediante la cual el investigador construye su mirada para el contexto investigado es influenciada por su vivencia y, de sobre manera, por su comprensión teórica (Lüdke; André, 1986; Bogdan; Biklen, 1994).
En esta perspectiva, con el fin de tornar la observación como una técnica válida para la recolección de datos, es necesario planear y sistematizar lo que el investigador escoge para “ver” el campo, es decir, las situaciones y/o fenómenos considerados como importantes para la investigación a ser desarrollada (Lüdke; André, 1986; Bogdan; Biklen, 1994). Así, elaboramos una guía de observación basada en la que ya fue utilizada por Becker (1994) con preguntas que orientaron nuestra mirada sobre el contexto estudiado y también la sistematización de informaciones en nuestro diario de campo.

Las observaciones ocurrieron en clases de Ciencias durante el mes de Junio de 2009, con un total de once clases observadas. Este periodo de observaciones fue negociado y consentido por la profesora responsable de la disciplina de Ciencias del curso en cuestión, así como las aclaraciones sobre las finalidades de este trabajo.

Para la realización de esta investigación, optamos por desempeñar el papel de “observador como participante” en el que, según Lüdke y André (1986), el investigador declara a los sujetos investigados su identidad y sus objetivos. Esta postura fue mantenida a lo largo de la investigación y la misma también fue acordada con la profesora de ciencias del respectivo curso.

Resultados: Describiendo la clases de Ciencias observadas

La dos primeras observaciones ocurrieron el primero de Junio de 2009 durante una clase doble de Ciencias. En estas, la profesora Clara buscó trabajar con las propuestas de evaluación y de situaciones de recuperación sugeridas por el currículo paulista con el propósito de revisar los contenidos trabajados anteriormente para aplicar la evaluación bimestral que ocurriría en este mismo mes.

En un primer momento, la docente realizó las actividades preliminares que, según Lemke (1997), comprenden actividades como: gerencias la clase en busca de silencia y cooperación de los alumnos para iniciar los contenidos previstos para el día, verificar la presencia-ausencia de alumnos, comunicar informaciones a la clase, recoger-corregir las tarea, entre otros.

5 La guía de observaciones constou de seis preguntas, a saber: (1) Cual es los procedimeintos realizados por el profesor que expresan su esfuerza para que el alumno aprenda? (2) Cual es las modalidades didácticas que utiliza en la práctica de enseñanza? (3) Rotula a los alumnos como “capaces” o “incapaces”?, (4) Son propuestos debates y discusiones?, (5) Como es tratada la ignorancia (error relativo) Del alumno?; y, (6) El deseo de aprender surge en El grupo o es creado por la profesora?

6 Esta investigación se constituye en una parte del trabajo de conclusión de curso (TCC) presentado por uno de los autores en la Facultad de Ciencias Agrarias y Veterinarias- UNESP, Campus de Jaboticabal, como requisito para la obtención del título de Bacharel en Ciencias Biológicas.

7 Con el fin de proteger la identidad de la profesora participante de la investigación, adoptamos un nombre ficticio para referirnos a ella.
Tales actividades preliminares consumirían un gran periodo de estas clases, dado que la administración del grupo exigía un gran esfuerzo de la docente. Este hecho ocurrió porque los alumnos se encontraban sentados en parejas debido a las actividades desarrolladas en la clase anterior. Además de esta organización del aula, los estudiantes conversaron con sus pares en tonos excesivamente altos y se desplazaron por el salón. Frente a este escenario, Clara solicitaba que los alumnos regresarán a la conformación original de las sillas (en hileras individuales) e hicieran silencio para dar inicio a la clase. Sin embargo, en la medida en que los estudiantes no atendían a los pedidos de la docente, ella repetía las solicitudes elevando cada vez más su tono de voz.

En tono excesivamente alto, Clara manifestaba no solamente el deseo de que los alumnos se sentaran y pararan de conversar, sino que también aprovechaba para decirles a los alumnos que estaban siendo muy irrespetuosos con la figura de la profesora. En el mismo tono, amenazó con llamar a la coordinación pedagógica o a la dirección, en caso de que no se comportaran de acuerdo a las orientaciones.

Después de un largo tiempo de reprender a los alumnos, cerca de veinte minutos, Clara realizó la llamada de lista y marcó la fecha de la evaluación bimestral. Al mencionar el asunto de la evaluación, los estudiantes empezaron a reclamar y a pedir que la profesora no aplicara la prueba. Frente a las quejas crecientes de los alumnos, Clara se enfrentó nuevamente al grupo, elevando nuevamente la voz y golpeando con los libros en su mesa. Además de esta actitud represiva, la docente también amenazó con no desarrollar la revisión de contenidos para la evaluación, en caso de que los estudiantes no se callaran. Sin embargo, este argumento no surtió efecto, ya que los estudiantes continuaban hablando excesivamente y la profesora elevaba su tono de voz.

Cuando Clara logró que los alumnos hicieran silencio, inicio las actividades previstas para el día. Con el objetivo de revisar los conceptos referentes al ciclo hidrológico y las relaciones ambientales, la profesora solicitó que los alumnos leyeran dos textos – “Fábrica de problemas” (São Paulo, 2009A, p. 36-37) y “Exterminio de tiburones hace saltar mariscos nos EUA” (São Paulo, 2009A, p. 47-48) – y respondieran las preguntas sobre los mismos, presentes en el cuaderno del alumno.

La lectura de los textos ocurrió en voz alta por parte de los alumnos que se ofrecían voluntariamente para leer alternadamente cada párrafo. A cada pausa, la profesora ofrecía explicaciones sobre los conceptos abordados en el texto, retomando los contenidos anteriormente trabajados y ofreciendo el significado de las palabras desconocidas por los estudiantes. Ya durante el segundo texto, los estudiantes iniciaron las conversaciones con sus pares por medio de murmullos que rápidamente aumentaron el tono. Así, nuevamente presenciamos escenas en las que la profesora elevaba el tono de voz frente a la conversación de los alumnos.

En la tercera aula observada, la profesora también gastó bastante tiempo para administrar el grupo en busca de silencio y cooperación por parte de los alumnos. Frente a la conversación y desplazamiento excesivo de los estudiantes, la docente elevó la voz, hizo amenazas, golpeó la mesa con los libros hasta conseguir un mínimo de silencio y atención para iniciar las actividades del día. Clara inició la transcripción del texto “Materiales de la naturaleza” en el tablero y
solicitó que los estudiantes la copiaran. Tal texto fue preparado por la profesora, dado que no se encontraba en el currículo paulista. Entretanto, los estudiantes no se interesaban por la actividad, ya que, la mayoría de ellos permanecían con sus cuadernos cerrados y desplazándose por el salón y/ou conversando.

De forma diferente a la clase anterior, la docente no elevó más su tono de voz frente al comportamiento. Sin embargo, la profesora perdió el control cuando un alumno le habló haciéndolo ver que la fecha de la evaluación no coincidía con la fecha en que tendrían clase de ciencias. En ese momento, los estudiantes se agitaron: reclamaban del hecho de ser evaluados y se burlaban de la docente por haberse equivocado en la fecha de la clase de Ciencias.

Después de conseguir la atención de los alumnos y finalizar la transcripción del texto en el tablero, la profesora buscó levantar la concepciones previas de los estudiantes respecto a las materias primas que son extraídas de la naturaleza. Para lo cual, preguntó a los estudiantes sobre cuales materiales son retirados de la naturaleza y cuales son producidos a partir de esos mismos. En este momento, varios estudiantes empezaron a responder al mismo tiempo las preguntas de la docente y, además de las respuestas, algunos indagaban sobre la procedencia de algunos materiales industrializados.

Sin embargo, los alumnos presentaban sus cuestionamientos de forma desordenada, ya que varios estudiantes hablaban al mismo tiempo y, con el fin de ser escuchados, elevaban el tono de voz. Frente a este escenario, la profesora levantó la voz, solicitando orden y silencio. Después de que los estudiantes se calmaron, Clara no dio continuidad a la discusión. En contrapartida, la docente inició la explicación del texto transcrito en el tablero, interactuando solamente con los alumnos que se sentaban en las primeras filas del salón, ya que los demás estudiantes volvieron a conversar y a desplazarse por el aula.

En las siguientes observaciones, la profesora realizó las actividades preliminares del día y, como en las demás aulas, la administración del grupo en busca de silencio y cooperación era largo. Con el fin de contener el comportamiento emprendido por los estudiantes, Clara dijo que haría una breve revisión de contenidos si permanecían en silencio, pues de lo contrario, ellos presentarían la evaluación sin la revisión previa.

Clara inicio la revisión cuando los estudiantes hicieron silencio. La profesora explicó como sería la evaluación, indicando que el primer ejercicio se trataría sobre cadenas alimenticias; el segundo y tercero tratarían contenidos sobre el agua potable; y, el cuarto, se referiría a problemas ambientales como los presentados en el texto “Fabrica de problemas” trabajado en la semana anterior.

Durante la revisión, que se daba de forma oral, la profesora elaboraba una pregunta (similar al tipo de pregunta que saldría en la evaluación) y solicitaba que los alumnos la respondieran. En la medida en que los estudiantes verbalizaban sus respuestas, Clara las evaluaba como correctas o incorrectas y, frente a los errores, la docente ofrecía la respuesta correcta. Vale la pena destacar que esta interacción entre profesora y alumnos se dio solamente con los estudiantes sentados en las primeras hileras del salón. Los demás estudiantes no se involucraron en la actividad y, aun bajo la amenaza de parar la revisión, ellos continuaban
conversando en voz alta con sus compañeros. Entretanto, Clara no cumplía su “promesa” apenas elevaba la voz con los estudiantes, amenazando finalizar la revisión y golpeando la mesa con los libros, situación repetida durante toda la revisión.

La revisión de los contenidos del primer bimestre terminó cuando la cuarta clase llegó a su fin. En este momento, Clara solicitó que los alumnos se alineasen en sus sillas de modo que entre las filas hubiera una distancia considerable para evitar que los estudiantes consultaran la hoja de los compañeros. Sin embargo, ellos hicieron este ejercicio de forma despaciosa y en medio de una conversación excesiva, instante en que Clara elevó el tono de su voz nuevamente.

Cuando los estudiantes se organizaron en filas de acuerdo a las orientaciones de la profesora, ella distribuyó las evaluaciones. Es importante destacar que, durante este momento, los alumnos permanecían en silencio absoluto mientras respondían la evaluación. A medida que el número de estudiantes que terminaban la prueba aumentaba, iniciaban las conversaciones con sus pares. Sin embargo diferente a las veces anteriores, la conversación era con murmullos y los estudiantes permanecían sentados en sus lugares. Esta situación perdió hasta el final de la clase.

Como en las descripciones anteriores, las actividades preliminares de las sexta y séptima clases observadas se desarrollaron durante un largo periodo, especialmente en lo relacionado a la administración del grupo en busca de silencio y cooperación de los alumnos. En estas clases, la docente inició las actividades previstas en el cuaderno de Ciencias del profesor del currículo paulista, a saber: el desarrollo de experimentos que favorecerían la comprensión de los conceptos relacionados a las propiedades físico-químicas de los materiales (Cf. São Paulo, 2009B)

Para esto, Clara solicitó que una alumna leyera un texto sobre el tema, ya que este constituía un preámbulo indicando que el conocimiento de las características específicas de los materiales era importante, ya que estos se relacionan con el uso cotidiano de los mismos. La lectura ocurrió en medio de la conversación excesiva de los estudiantes. Sin embargo, de forma diferente a lo descrito en las aulas anteriores, Clara no se enfrentó a los alumnos de forma general. La profesora caminó por el salón y, de forma individual, llamaba la atención de los estudiantes, solicitando que abrieran el material y permanecieran en sus lugares.

Después de la lectura, Clara inició las explicaciones sobre el texto, sin embargo, en la medida en que la profesora avanzaba con las explicaciones, las conversaciones entre los alumnos aumentaban el tono de voz, repitiéndose las escenas anteriormente descritas. Pero en esta ocasión fue tal el desespero de la profesora que acabo tomando un estudiante por el brazo para pedirle que se levantara de la silla, ya que lo llevaría a la dirección de la escuela. Destacamos que los demás estudiantes no se intimidaron con tal actitud, ya que, al regresar con el alumno, la conversación y el desplazamiento continuó aumentando.

Después de recuperar el control sobre el grupo, Clara dio inicio a las actividades previstas por el currículo paulista. Según el cuaderno del profesor, disciplina Ciencias, el tema “Propiedades específicas y uso de los materiales” debería ser trabajado por medio de experimentos que se desarrollarían en pequeños grupos. En estas, los alumnos deberían visualizar, identificar y anotar sus percepciones al respecto de la coloración, del olor, de la
textura, de la dureza, del magnetismo y la solubilidades de cuatro materiales, a saber: sal de cocina, harina de trigo, grafito, e puntilla (Cf. São Paulo, 2009B, p. 9-12).

La profesora, adoptó tales actividades, de modo que los experimentos en pequeños grupos fueron substituidos por demostraciones realizadas por la docente. Esta estrategia fue justificada por Clara durante la entrevista. Según la profesora: “Yo no la hice así, porque se convierte para ellos en un juego de lanzarse las cosas los unos a los otros”. De este modo, la docente organizó los experimentos en su mesa y pidió a los alumnos hacer una fila y pasar a observar individualmente, para cada una de las etapas de los experimentos.

Aunque la adaptación realizada por la profesora se proponía contener el comportamiento de los estudiantes, este mecanismo falló. A medida que los estudiantes regresaban a sus lugares, comenzaban de nuevo el desorden. Por este motivo, Clara suspendió las demostraciones en varias oportunidades. Finalizada la actividad, la profesora solicitó que los alumnos completaran las tablas referentes a las demostraciones y respondieran a los ejercicios asociados presentes en el cuaderno del alumno (Cf. São Paulo, 2009B). Como de costumbre, la mayoría no atendió a la solicitud. En este contexto, observamos como se repetían las escenas.

La octava clase se inició del mismo modo que las anteriores. Después de tener el control, Clara dejó la clase bajo la responsabilidad de las practicantes que la acompañaban, ya que ellas iniciaron el levantamiento de concepciones previas de los estudiantes sobre el tema “Agua”, ya que este tema sería objeto de estudio de la práctica docente de ellas en el siguiente bimestre. En consecuencia, la profesora salió del salón y nos pidió salir para dejar las practicantes libres.

Así, fuimos con Clara para la sala de profesores, lugar en el cual establecimos conversaciones informales. En este momento, la profesora habló sobre sus clases, señalando las experiencias sugeridos por la Propuesta Curricular del Estado de São Paulo que ella realizó en clase. De acuerdo a la docente, las experiencias ayudan a los alumnos a comprender mejor el contenido, pero “Yo no hago algunas porque tienen que ir al laboratorio y yo tengo miedo. De pronto ellos rompen alguna cosa, o manipulan sustancias indebidas, o se lastiman... y ahí que hago?”

La docente también dijo que las practicantes que la acompañan le han ayudado mucho en este aspecto, especialmente con estos cursos. De acuerdo con la profesora, el trabajo en equipo con las academias ha sido fructífero, porque ellas le ayudan en la preparación del material para la demostración, y también a controlar el curso y aclarar algunos aspectos de contenido trabajados.

En relación con los experimentos, Clara relató que le gustó el material adoptado por el Estado de São Paulo porque trae textos y experiencias. Según la profesora, el material ayuda en los procesos de enseñanza-aprendizaje dado que posibilita el establecimiento de relaciones entre la teoría y la práctica.

Finalmente, la profesora mostró los cuadernos en los cuales preparó las clases de los diferentes niveles, resaltando su esfuerzo para planear sus aulas y también su constante estudio sobre los contenidos con el fin de tener mayor seguridad en la práctica. En palabras de la profesora, “Uno intenta hacer lo mejor!”
En las observaciones siguientes, novena y décima clase, las actividades preliminares acontecieron de forma más ágil, dado que la docente no se prolongó en la organización de la clase, y también disminuyó la frecuencia de momentos en que levantaba la voz. Las correcciones de los ejercicios desarrollados en la sexta y séptima clases se dieron de modo oral y en medio de la algarabía de los estudiantes. Repitiéndose el desinterés de la mayoría, y la profesora interactuando solamente con los estudiantes que se involucraban en las actividades.

La revisión de los contenidos siguió el mismo patrón del descrito anteriormente: pregunta de la profesora, respuesta de los alumnos, evaluación docente. En este contexto, cuando los estudiantes daban respuestas equivocadas, la profesora ofrecía la solución correcta y continuaba para el próximo ejercicio. Finalizadas las correcciones, Clara buscó la atención y el silencio de los alumnos para proseguir con la clase, ya que sería “tema nuevo”. Para esto, la profesora repitió el cuadro de llamados de atención y amenazas, ya que pretendía realizar las demostraciones sobre solubilidad y densidad.

Para el tema “Agua, propiedades y usos” los materiales curriculares sugerían que los estudiantes desarrollaran experimentos en pequeños grupos, para mezclar los materiales anteriormente trabajados (sal de cocina, harina de trigo, puntilla y grafito) en un poco de agua y observar si estos se disuelven o se hunden en el agua (Cf. São Paulo, 2009B, p. 13-17). Entonces, la profesora mezclaba los materiales en el agua y les mostraba a los estudiantes, preguntando sobre solubilidad y densidad. Después de la actividad, les solicitó responder los ejercicios y diligenciar las tablas presentes en los cuadernos del alumno.

Aun frente a la situación de que la mayoría no respondió los ejercicios, Clara realizó las correcciones de estas clases, interactuando siempre con un pequeño grupo de estudiantes. En busca de mayor participación, la profesora pidió que dos o tres estudiantes respondieran la misma pregunta para destacar las semejanzas y diferencias entre las afirmaciones presentadas, haciendo algunas explicaciones y presentando las respuestas correctas.

En la última clase observada, se repitió el cuadro inicial de descontrol durante la mitad de la clase. Para luego iniciar la corrección de los ejercicios relacionados con solubilidad y densidad de los materiales. Esta actividad igual que las anteriores con un pequeño grupo de estudiantes.

Discusión: Interacciones e indisciplina en las clases de Ciencias.

Al analizar las descripciones de las clases de ciencias observadas, constatamos que las interacciones discursivas establecidas se constituyen en momentos de indisciplina. Retomando el referencial teórico adoptado en este trabajo, no encontramos en la obra de Vygotsky alguna alusión explícita sobre el tema de la indisciplina, sin embargo, sus fundamentos sobre la constitución social del individuo nos permiten ampliar el horizonte en esta temática, al asociarla al medio socio-cultural. Reconocemos que existe una multiplicidad de sentidos atribuidos al concepto de indisciplina y que el significado –núcleo común de este término– es sometido a variaciones en la interpretación, dado que hay una diversidad de interacciones establecidas con el
O próprio conceito de indisciplina como toda criação cultural, não é estático, uniforme, nem tampouco universal. Ele se relaciona com o conjunto de valores e expectativas que variam ao longo da história, entre as diferentes culturas e numa mesma sociedade: nas diversas classes sociais, nas diferentes instituições ou até mesmo dentro de uma mesma camada social ou organismo. Também no plano individual a palavra indisciplina pode ter diferentes sentidos que dependerão das vivências de cada sujeito e do contexto em que foram aplicadas. Como decorrência os padrões de disciplina que pautam a educação das crianças e jovens, assim como os critérios adotados para identificar um comportamento indisciplinado, não somente se transforma ao longo do tempo como também se diferenciam no interior da dinâmica social (Rego, 1996, p. 84).

Al analizar los datos presentados en el capítulo anterior, notamos que el significado de indisciplina presente en el caso estudiado se refiere a las manifestaciones –individuales y/o grupales– de los alumnos que no obedecen o que no respetan la autoridad representada por la profesora en el salón de clase. Este comportamiento indisciplinado se expresa por actitudes que dificultan y/o imposibilitan el trabajo docente como, por ejemplo conversación excesiva entre los estudiantes e inquietud motora de los mismos. De este modo, el curso es entendido como sometimiento a las reglas y preceptos impuestos para conseguir la organización necesaria para el “buen funcionamiento de la clase” y, siendo así, toda manifestación de conversación, falta de atención, desinterés, desacuerdos o inquietudes por parte de los alumnos son tomados como indisciplina. En este contexto, se busca docilidad y pasividad de los estudiantes por medio del control y la coerción, es decir, disciplina se vuelve sinónimo de opresión (Rego, 1996; Vigotsky, 2005).

Resaltamos que no estamos defendiendo que los procesos de enseñanza y aprendizaje deban darse en medio del caos, sino en un contexto educativo en el cual el docente, como el miembro con mayor experiencia del grupo, ayude a los estudiantes a reconstruir y negociar sentidos y significados a la disciplina, y de igual modo ofrecerles reinterpretaciones al concepto de disciplina, sin limitarlo a la mera sumisión u opresión. De esta manera, idealizamos las situaciones educativas como momentos que favorezcan la elaboración del concepto de (in)disciplina, ya que siendo esta una construcción socio cultural, ella debe darse en medio de la colectividad que la clase posibilita, teniendo el profesor el papel de mediador en este proceso.

Ayudar los estudiantes en la construcción e interiorización de los conceptos de disciplina e indisciplina es de suma importancia, ya que vivir en sociedad implica la creación y el establecimiento de reglas que regulan las relaciones entre los individuos, asegurando el diálogo, la cooperación y el intercambio entre los miembros de un grupo social. La escuela, como institución social, también necesita de reglas que orienten su funcionamiento y la conducta de los sujetos que en ella actúan y conviven. Así, las reglas y normas pierden la connotación de prescripciones castradoras y opresoras y pasan a ser entendidas como condición necesaria para la convivencia social (Rego, 1996).

Mais do que subserviência cega, a internalização e a obediência a determinadas regras pode levar o indivíduo a uma atitude autônoma e, como conseqüência, libertadora, já que orienta e baliza
sus relaciones sociales. Neste paradigma, o disciplinador é aquele que educa, oferece parâmetros e estabelece limites (Rego, 1996, p. 86).

Por tanto, se hace necesario que mas allá de cumplir reglas, los estudiantes también sean incluidos en la construcción de las mismas en la medida de lo posible. La elaboración de las normas que nortearán las interacciones sociales para apoyar los alumnos en el proceso de interiorización, frente a la reflexión y a la aceptación de valores y de actitudes que favorezcan la convivencia y el funcionamiento del grupo.

En este contexto, mas allá de conceptos, hechos y procedimientos, el profesor deberá crear situaciones para la construcción de contenidos actitudinales durante sus clases. Tales contenidos son comprendidos como actitudes, normas y valores que, de acuerdo con Zabala (1998):

Entendemos por valores os princípios ou as idéias éticas que permitem às pessoas emitir um juízo sobre as condutas e seu sentido. São valores a solidariedade, o respeito as outros, a responsabilidade, a liberdade, etc. As atitudes são tendências ou predisposições relativamente estáveis das pessoas para atuar de certa maneira. São a forma como cada pessoa realiza sua conduta de acordo com valores determinados. Assim, são exemplos de atitudes: cooperar com o grupo, ajudar os colegas, respeitar o meio ambiente, participar das tarefas escolares, etc. (...) As normas constituem a forma pactuada de realizar certos valores compartilhados por uma coletividade e indicam o que pode se fazer e o que não pode se fazer neste grupo (Zabala, 1998, p. 46-47).

Partiendo de estos presupuestos, la indisciplina se torna una actitud de falta de respeto a los acuerdos firmados socialmente, es decir, el comportamiento indisciplinado pasa a ser comprendido como una intolerancia y/o una intransigencia a los limites que enmarcan las conductas y las relaciones de un determinado individuo o grupo. Aun en esta perspectiva, los limites pierden su aspecto negativo pasando a ser comprendidos también como condición que “sitúa, concientiza de la posición ocupada dentro de algún espacio social – la familia, la escuela, y la sociedad como un todo” (Rego, 1996).

El alumno indisciplinado no es aquel que se inquieta y se mueve en el salón, dado que las situaciones de enseñanza exigen una participación activa del estudiante para que se torne sujeto de su aprendizaje y, siendo así, la inestabilidad y el desplazamiento de los estudiantes paran a ser indicadores de que los estudiantes se están involucrando. En estos términos, el alumno indisciplinado es aquel que no respeta los limites firmados socialmente, que no considera los puntos de vista y los sentimientos de los demás sujetos del grupo (clase) y posee dificultades en autogobernarse (Vygotsky, 1984; Rego, 1996).

Deste ponto de vista, a disciplina é concebida como uma qualidade, uma virtude (do indivíduo ou de um grupo de alunos) e, principalmente, como um objetivo a ser trabalhado e alcançado pela escola. Como decorrência, a disciplina, ao invés de ser compreendida como um pré-requisito para o aproveitamento escolar, é encarada como resultado (ainda que não exclusivo) da prática educativa realizada na escola (Rego, 1996, p. 87)

Comprendiendo la disciplina como un resultado a ser buscado, el ambiente escolar – en cuanto ambiente social en el cual son construidos conceptos y valores – debe crear situaciones
para que los niños y adolescentes conozcan los comportamientos y las posturas que son consideradas correctas (disciplinadas) en nuestra cultura y que ellos mismos puedan construirlas e interiorizarlas. Así, la práctica educativa también debe tomar en cuenta la instrumentalización de los alumnos, ayudándolos en el desarrollo de su autocontrol para que frente a las diferentes situaciones sociales los estudiantes puedan reflexionar y decidir por sí solos cuales comportamientos son adecuados (Rego, 1996).

La construcción de los contenidos actitudinales, como favorecedores de la interiorización de la disciplina como fortalecedora de las interacciones sociales, debe darse durante todas las fases de la escolarización y por toda la comunidad escolar. Debido a su carácter transversal, la construcción de actitudes y de valores no se limita a la práctica docente de apenas un profesor, sino a todo el profesorado en gestión que, paulatinamente, ayudará los estudiantes en la elaboración e interiorización de las mismas, creando situaciones para que, durante la construcción y reconstrucción de actitudes y de valores, los alumnos no aceptan las reglas apenas por la búsqueda de recompensas o fuga de sanciones, sino como normas reflexionadas que garanticen y regulen el funcionamiento y las interacciones del grupo.

Para esto, el papel mediador del profesor es de gran importancia, ya que su interpretación sobre (in)disciplina y la reflexión sobre las reglas establecidas con el grupo construirán su practica pedagógica, ofreciendo elementos que interfieren en la manera de comprender las interacciones alumno-alumno – así como en la forma que se relaciona con los estudiantes –, que construye los criterios para la evaluación de los alumnos, tanto como en el modo en que trazará los objetivos de su práctica (Rego, 1996).

También en este sentido, es fundamental que el profesor busque coherencia entre la conducta que espera de sus alumnos y su propio comportamiento, dado que el aprendizaje también ocurre por medio de la imitación de modelos que les son ofrecidos. Si el profesor desea que sus estudiantes desarrollen valores como la tolerancia, el respeto mutuo, la cooperación, la solidaridad, la justicia, entre otros, es necesario que el docente no solamente verbalice su deseo, sino que también se viva en un ambiente en el cual tales valores permean las interacciones sociales, siendo este alcanzado a través de las imágenes y comportamientos que el profesor transmite a los estudiantes. En este aspecto, el profesor ayuda en la construcción del concepto de (in)disciplina con su propio ejemplo (Vygotsky, 1984; Zabala, 1998).

Frente a estas reflexiones percibimos que las actitudes tomadas por la profesora Clara frente a los comportamientos de sus alumnos no fueron las mas adecuadas, en el sentido de auxiliarlos en la construcción y la interiorización de valores y actitudes que conducirían al concepto de disciplina deseado. Al perder el control frente a las conversaciones excesivas y a los desplazamientos de los estudiantes en el salón, Clara se alejó de la figura de profesora mediadora en dos aspectos: (1) frente a la agitación de los estudiantes la profesora no buscó otros medios para contribuir en la construcción e interiorización de actitudes y de valores de modo que ellos pudieran reflexionar sobre sus conductas y como estas interferían negativamente en el trabajo del grupo; y, (2) al elevar excesivamente el tono de voz al tiempo con los estudiantes, al amenazarlos y golpear en la mesa con los libros en busca de atención, Clara dejó de ser el modelo (el parámetro) de conductas deseables para los estudiantes, demostrando incoherencia.
entre el discurso (los comportamientos deseados en el alumno) y la práctica (la conducta del docente).

Como consecuencia de las actitudes de Clara, las normas perdieron el carácter de fortalecedoras de las interacciones sociales y adquirieron la connotación de reglas castradoras y/o opresoras, las cuales deben ser aceptadas y observadas para evitar puniciones (de la profesora, de la coordinación y/o de la dirección de la escuela) o en la búsqueda de recompensar. En este aspecto, la propia interpretación de (in)disciplina de la profesora y de los alumnos influenció en las interacciones establecidas en la clase, visto que las interacciones discursivas profesor-alumno fueron marcadas por tensiones y confronto. Así, por un lado, observamos la docente que intentaba imponer su figura de autoridad en el clase por medio de actitudes que pueden ser comprendidas como coercitivas y, por otro lado, los alumnos que resistían a las tentativas de la profesora, manifestando comportamientos indisciplinados. Vale resaltar que frente a estos aspectos, las interacciones discursivas del tipo alumno-alumno se constituyeron en momentos de indisciplina, los cuales la docente intentaba minimizar para el “buen funcionamiento de la clase”.

Consideraciones Finales

Partimos de la relevancia de que las interacciones discursivas establecidas en situaciones de enseñanza-aprendizaje desempeñan en el proceso de construcción del conocimiento y, a partir de nuestras inquietudes sobre como el proceso interactivo se desarrolla en las clases de Ciencias, elaboramos las preguntas de investigación que nos guiaron en el análisis del caso estudiado: ¿Cómo se dan las interacciones discursivas establecidas durante las clases de ciencias? ¿Cuál es la calidad de estas interacciones? ¿Cuál es la concepción docente sobre el proceso interactivo? ¿Cuáles tipos de interacción ocurren predominantemente en las clases de ciencias?

Al revisar nuestras indagaciones, sobre los datos recogidos y las discusiones y reflexiones emprendidas en esta investigación, percibimos que sería necesario mayor tiempo de trabajo de campo y también la exploración de otros casos para responder, con más propiedad, las preguntas propuestas. Además, creemos poder tejer algunas consideraciones, aun cuando temporales, sobre el caso estudiado.

Las clases de ciencias observadas presentan tanto las interacciones discursivas profesor-alumnos como las de tipo alumno-alumno. En cuanto, tales interacciones se encuentran polarizadas, es decir, por un lado observamos la interacción unidireccional profesor-alumno en la cual la docente buscaba imponer su autoridad en la clase y controlar el comportamiento de los estudiantes. Por otro lado, tenemos también las interacciones alumno-alumno que se colocan como, entre otros, elementos resistencia a las imposiciones de la docente a través de comportamientos dichos indisciplinados como, por ejemplo, conversación excesiva entre pares (en la mayoría de las veces en tonos de voz elevados) y el intenso desplazamiento de los estudiantes por el salón.
En este contexto, las interacciones discursivas desarrolladas en clase son permeadas por situaciones de indisciplina, entendiendo este concepto como infracción a las reglas establecidas por la profesora y/o por la escuela. Así, frente a esta interpretación de (in)disciplina, observamos que la docente, por medio de amenazas, busca controlar las interacciones discursivas de tipo alumno-alumno, con el fin de contener determinados comportamientos de los estudiantes, buscando así la docilidad y pasividad de los estudiantes. Para esto, verificamos que la profesora utiliza mecanismos – la clase expositiva y la demostración, por ejemplo – para contener la indisciplina manifiesta en la clase, también, para disminuir riesgos de accidentes. Además, el comportamiento desarrollado por los estudiantes se mostró resistente al control de la docente y, así, tales mecanismos resultaron fallidos.

En el caso estudiado, el movimiento del control emprendido por la docente y la indisciplina de los alumnos impidieron el ofrecimiento de canales interactivos quepermitiesen la construcción de conocimientos científicos. Siendo así, no nos fue posible observar intervenciones dentro de Zonas de Desarrollo Próximo que posibilitaran intervenciones fructíferas en lo que se refiere a las negociaciones de sentidos y significados dentro de estas.

Vale destacar que, en este movimiento de control de comportamiento de los alumnos, la docente buscaba contener toda y cualquier interacción discursiva que los estudiantes presentaran. Así, las interacciones de tipo alumno-alumno que podrían desempeñar algún aspecto positivo en los procesos de enseñanza-aprendizaje – cuando un estudiante ayuda a un compañero en la resolución de alguna actividad; cuando un alumno resuelve la duda de un compañero, explicando determinado contenido por medio de un lenguaje mas cercano; entre otros – también son restringidas. En estos términos, la tentativa de control emprendida por la docente limita el proceso interactivo en el salón lo cual, en última instancia, desfavorece posibles interacciones dentro de Zonas de Desarrollo Próxima.

Es importante destacar que los procesos interactivos son demasiado complexos, de modo que este trabajo no puede abarcar todos los elementos que influenciaban la dinámica discursiva del caso estudiado. Así, los aspectos abordados en esta investigación – la (in)disciplina y la constitución socio-histórica de la profesora – constituyen apenas una pequeña parte del todo que permea la clase.

Referencias Bibliográficas

ELEMENTOS FUNDAMENTALES PARA LA EVALUACIÓN OBJETIVA DE SOFTWARE EMPLEADO EN LA ENSEÑANZA DE LA FÍSICA

J. L. Navarro
jlnavarros@correo.udistrital.edu.co

J. F. Juev
jffueyb@udistrital.edu.co

E. P. Infante
epinfant@udistrital.edu.co

A. Hurtado
ahurtado@udistrital.edu.co

RESUMEN

En los últimos años se ha incrementado el uso de un gran número de herramientas informáticas en la enseñanza de la Física. Al igual que cualquier otro material didáctico -como libros, artículos y revistas científicas- el Software Educativo debe ser evaluado por los docentes antes de su implementación en el aula de clase. Sin embargo, para lograr una evaluación objetiva de este, se deben establecer para cada tipo de software, criterios y parámetros que ayuden a valorar y ponderar de una forma objetiva la calidad de dicho software. Como resultado de un trabajo de investigación en el presente artículo se proponen los elementos que se consideran fundamentales al momento de evaluar un Software Educativo para la enseñanza de la Física y, en un caso particular, para la enseñanza de Mecánica Clásica previo a su implementación en el aula de clase.

Palabras claves: Evaluación, Software Educativo, Mecánica Clásica.

ABSTRACT

In recent years has increased the use of a lot of number of informatical tools in the physics teaching, thus, like any other didactic material as books and scientific journals, between others, the educational software, should be evaluated by teachers before it’s implementation in classrooms. However, to achieve an objective evaluation, should be established for each type of software, some criteria and parameters that help to evaluate in an objective way the quality of this software. In this vein, in this article, and as a result of a research work, shows the fundamental elements that should be presents to evaluate educational software of classical Mechanics before it’s implementation in the classroom.

Key words: Evaluation, Educational Software, Classical Mechanics.

1 Estudiante de Maestría en Ingeniería Biomédica, Universidad Nacional de Entre Ríos-Argentina.
2 Estudiante de Maestría en Física, Universidad Nacional de Colombia- Sede Bogotá.
3 Estudiante de Doctorado en Ciencias Biológicas, Pontificia Universidad Javeriana, Colombia-Bogotá D.C
4 Licenciado en Física, Universidad Distrital Francisco José de Caldas, Colombia-Bogotá D.C.
Introducción

En la actualidad la tecnología forma parte integral de la formación del individuo, por lo tanto la educación y los procesos de enseñanza y aprendizaje de la Física no pueden estar ajenos a esta situación, debido a que el estudiante puede llegar a comprender diversas fenomenologías más fácilmente con ayuda de simulaciones, laboratorios virtuales, animaciones y páginas Web, entre otros.

Actualmente existe un gran número de ayudas tecnológicas que pueden ser utilizadas en la enseñanza de la Física pero, al igual que se hace con otros materiales educativos, los docentes necesitan conocer parámetros de valoración del Software educativo que incluyan de una forma articulada la revisión, evaluación y selección de estas herramientas tecnológicas antes de ser empleadas en las sesiones de clase, con el fin de contribuir con su implementación al mejoramiento del proceso enseñanza y aprendizaje, de tal manera que los conceptos se vinculen de una manera clara y estable con los conocimientos previos que cada individuo poseía (De Zubiria 1999).

Teniendo en cuenta todos estos aspectos, en el presente artículo se muestran los resultados de un proceso de investigación en el cual se buscó establecer cuáles son los parámetros que se deben tener en cuenta para poder realizar una evaluación objetiva de la calidad, utilidad y pertinencia del Software Educativo, con miras a elaborar una herramienta que quede al servicio de los docentes y estudiantes de Física, permitiéndoles realizar una evaluación de cualquier software previa a la implementación en sus clases.

1. Software Educativo en la enseñanza de la Física

El software educativo se define como una herramienta didáctica que se puede explorar con ayuda de los programas de computación sin importar el sistema operativo en el cual se trabajen; dichas herramientas están dirigidas a complementar el proceso de enseñanza-aprendizaje y, por lo tanto, ser un puente de comunicación entre el docente y sus alumnos, facilitando el desarrollo de las habilidades del estudiante y haciendo más efectivo dicho proceso.

Gracias al uso de Software Educativo implementado en la enseñanza de la Física, como una herramienta didáctica o recurso pedagógico el cual permite solucionar algunos inconvenientes técnicos, económicos y en otros casos logísticos, se facilita el estudio de distintas fenomenologías que ocurren en la naturaleza, lo cual beneficia tanto a estudiantes como a docentes.

Entre las herramientas tecnológicas más frecuentemente utilizadas en la enseñanza de la Física, podemos mencionar entre otras:

I-Páginas Web

Las páginas Web se han convertido durante los últimos años quizá en la herramienta más utilizada en el proceso de enseñanza de la física; dado que Internet ha permitido la masificación de contenidos educativos como artículos, ensayos, textos, entre otros documentos digitalizados. Incluso se pueden encontrar foros de discusión, canales de conversación, programas y acceso a bibliotecas y universidades entre otras tantas utilidades que despliegan una enorme cantidad de
información, disponible para cualquier nivel de educación.

Estas páginas que contienen hipertextos y multimedia, también llamadas hipermedia, son la herramienta más difundida y utilizada; actualmente es la que ofrece mayor número de prestaciones en el campo académico, respaldada por su versatilidad tecnológica y la posibilidad de interactuar con ella.

II-Simulaciones o Fislet

Las simulaciones son programas que facilitan el estudio de diferentes conceptos, situaciones o eventos emulando algunos aspectos de éstos, permitiendo a su vez que el usuario modifique algunos parámetros, por medio de los cuales se puede acercar a eventos tan reales o ideales como lo permita el diseño de la simulación. Esta clase de software es ampliamente utilizada en aquellos procesos de experimentación en los que no es posible la observación directa de los mismos ya sea por su grado de dificultad ó bien, por el elevado costo del equipo de laboratorio para dicha práctica; ya que se trata de applets (Simulaciones) de Física, también son conocidos como Fislets.

III-Animaciones

Las animaciones tienen como principal característica representar movimientos de imágenes ó dibujos; tanto reales como ficticios. Estas animaciones suelen estar diseñadas en base a lenguajes de programación, lo que las convierte en un software netamente descriptivo. Para el caso de la enseñanza de la Física, la animación tiene como objetivo presentar situaciones, cuyos parámetros no son controlables por el estudiante, de forma virtual. Se debe tener en cuenta que una animación por sí sola no se constituye en Software Educativo, pero si se utiliza dentro de un marco de pedagógico y didáctico adecuado, puede ser considerado como tal.

IV-Laboratorios Virtuales

Los laboratorios virtuales son programas diseñados con la finalidad de simular experimentos hipotéticos ó reales en donde el estudiante sea quien interactúe, creando y modificando parámetros del laboratorio con el objetivo de explorar el comportamiento de las variables a estudiar en dicho experimento.

Aunque estas herramientas no son los únicos tipos de software educativo que se puede implementar en la enseñanza de la Física, en el presente documento nos centraremos en estos cuatro, puesto que son los usados más frecuentemente.

2. Ventajas y desventajas del uso de Nuevas Tecnologías de la informática y la comunicación en la enseñanza de la Física.

Nos encontramos en una época de permanente avance tecnológico, lo cual tiende a integrarse día a día con mayor frecuencia a diferentes ámbitos de la vida cotidiana. En este orden de ideas, la educación no ha escapado a esta tendencia, sino que por el contrario se han desarrollado métodos que permiten vincular las llamadas nuevas tecnologías de la información y la comunicación con la educación, buscando que esta integración se logre de forma adecuada sin causar grandes inconvenientes a quienes están involucrados directa o indirectamente en el proceso de Enseñanza- Aprendizaje.
Cuando se habla de Tecnología vinculada con la educación, se hace referencia principalmente a las conocidas Nuevas Tecnologías de la Información y la Comunicación (NTIC’S), las cuales reúnen un gran número de instrumentos o herramientas utilizados para promover el acceso a la información de la gran mayoría de la población, basándose principalmente en el uso del Computador y de la Internet. El uso adecuado de estas tecnologías beneficia tanto a docentes como estudiantes, ya que con ayuda de ellas se pueden innovar las técnicas de enseñanza y la forma en que se presentan los contenidos, permitiendo que los estudiantes se apropien rápidamente de los conceptos y puedan desarrollar así su carácter investigativo en busca de mayor información, de una forma más ágil.

Como lo mencionan (Hurtado, et al. 2006), la introducción del computador en la enseñanza de la Física tiene particularmente un gran número de beneficios, entre los cuales se destacan: la posibilidad de realizar cálculos complicados en tiempos reducidos, manejo de una gran cantidad de información, observación virtual de experimentos que de otra forma serían difíciles de observar, así como la realización de gráficos para su posterior análisis. Sin embargo, estos beneficios dependen en gran medida del buen manejo que los docentes le den a estas tecnologías enmarcándolas dentro de una estructura pedagógica y didáctica adecuada, en la cual se tengan definidos los objetivos al utilizar estas herramientas, ya que de no tener claros estos aspectos no se estará logrando que los estudiantes mejoren la apropiación de los conceptos involucrados en un tema determinado.

Como se mencionó anteriormente, la herramienta tecnológica comúnmente utilizada para la enseñanza de la Física es el computador y toda clase de Software Educativo, entre los que se encuentran: Páginas Web, applets y animaciones, entre otros. Estos pueden implementarse de diferentes maneras de acuerdo a la orientación que se pretenda, por ejemplo: se puede utilizar como medio de enseñanza-aprendizaje, es decir, educación apoyada con el computador, como una simple herramienta de trabajo, siendo de esta manera un instrumento para el procesamiento de información, o también puede ser empleado como un objeto de estudio.

En este sentido, se cree que para la enseñanza de la Física es más importante el uso del computador como un medio para mejorar el proceso enseñanza-aprendizaje (Hurtado et. al. 2006) ya que éste se puede emplear en una gran variedad de aplicaciones, entre las cuales se destacan: la elaboración y posterior utilización de simulaciones, páginas Web, programas tutoriales entre otros (Hurtado et. al. 2006). Además al integrar el computador en una clase, se están ligando conocimientos tanto de tecnología educativa, de didáctica y de la disciplina a enseñar (Hurtado et. al.2006), lo que beneficia directamente a los estudiantes.

Entre las principales ventajas que tiene el uso adecuado del computador como una herramienta didáctica para la enseñanza de la Física se destacan: la innovación que representa su inclusión en el aula de clase; dejando de lado las clases tradicionales en las que el docente sólo se vale del tablero para presentar los diferentes conceptos a sus estudiantes. Así mismo se tiene la motivación que representa para los estudiantes hacer uso del mismo en sus clases y por último, se incluyen aspectos relacionados con la eficiencia, por ejemplo: la rapidez en el procesamiento de datos, almacenamiento de gran cantidad de información, lo cual se ve reflejado en el mayor avance de los contenidos de cada asignatura.
Por otra parte, así como se habla de las ventajas que el uso del Software Educativo le reporta a las clases, es importante mencionar algunos riesgos que trae consigo el uso inadecuado del Software Educativo como una herramienta didáctica. Entre los más importantes se halla la alienación que se puede generar hacia el computador por parte tanto de los docentes como de los estudiantes, llegando al punto de considerar que las clases en las que no se utilice el computador no contribuyen ni aportan nada a los estudiantes. Esto puede ocurrir si se utiliza indiscriminadamente el computador sin tener una estrategia metodológica y unos objetivos claros para el uso de la tecnología en el aula de clase.

Así mismo, otro riesgo potencial que se presenta en cuanto al uso de la tecnología en el aula de clase, se encuentra en la falta de conocimiento que algunos docentes tienen en cuanto a la forma adecuada de utilizar este tipo de herramientas, es decir, el no conocer cuál es el momento adecuado para utilizarlos, si debe ser antes o después de la explicación del tema; o si debe ser utilizado de forma paralela a ésta. Teniendo en cuenta que es el docente quien tiene la potestad de decidir cuál es el papel más adecuado que debe representar el software educativo en la clase, dependiendo del tema y de los objetivos planteados antes del desarrollo de la misma, por esta razón, es importante que los docentes tengan herramientas que les permitan establecer cuál es la mejor manera de usar la tecnología en su clase y así sacarle el mayor provecho.

Es importante resaltar que las Nuevas Tecnologías de la Informática y la comunicación, sin importar de cuál se haga referencia, no son un sustituto de los docentes, simplemente son herramientas cuyo objetivo es ser un puente entre el profesor y sus estudiantes, con miras a fomentar en estos últimos el interés por los diferentes temas abordados en las clases, para que así puedan encontrar más fácilmente aplicaciones reales en su contexto, y de esta forma se pueda lograr una apropiación más rápida de los contenidos por parte de los estudiantes.

El uso de la tecnología para la educación tiene por sí sola una serie de factores que motivan tanto a profesores como a estudiantes, no se puede caer en prácticas repetitivas que no contribuyen en nada a mejorar la calidad del proceso enseñanza-aprendizaje.

Para poder obtener los mejores resultados con el uso de Software Educativo en clases de Mecánica Clásica es necesario que los docentes tengan establecido desde un comienzo el modelo pedagógico, en el cual trabajará para poder cumplir a cabalidad con los objetivos planteados con el uso de estas herramientas, y establecer una estrategia metodológica clara. Por esta razón, es importante tener en cuenta aspectos relacionados con el Software en cuanto a: finalidad, principios curriculares, estrategias didácticas y formas de aprendizaje que promueve en los estudiantes (Alzugaray 2008).

Se debe resaltar que la mayoría de los Software educativos elaborados para la enseñanza de la Física se pueden considerar pedagógicamente neutros, es decir, que pueden ser utilizados sin importar la orientación pedagógica del docente encargado de desarrollar la clase. Sin embargo, se considera que el modelo pedagógico en el cual se puede obtener el mayor provecho de la utilización de Software educativo es el Constructivismo y el Aprendizaje Significativo, teniendo en cuenta que dichas corrientes incluyen ciertas características que buscan fortalecer la autonomía del estudiante, su carácter investigativo y la apropiación de los conceptos de una forma perdurable y no solo momentáneamente. (Barriga Acero 1999).
3. Aspectos relacionados con la evaluación que se deben tener en cuenta

Cabe resaltar que la evaluación tiene una gran importancia para el mejoramiento del proceso Enseñanza-aprendizaje, debido a que a través de ésta se puede extraer información muy significativa, la cual puede ser utilizada para conocer las causas de los problemas que se puedan presentar así como plantear mejoras a los procedimientos y herramientas didácticas utilizadas.

Con el ánimo de contextualizar los criterios de evaluación utilizados para la formulación de los elementos fundamentales para evaluar software educativo utilizado en la enseñanza de la Física, a continuación se presentan algunas consideraciones que se deben tener en cuenta desde el enfoque constructivista relacionadas con el proceso de evaluación (Barriga Acero1999).

Independientemente de la orientación pedagógica que cada docente maneje, la evaluación siempre incluye una serie de actividades de valoración cualitativa y cuantitativa tanto del desarrollo de los estudiantes como de las herramienta que se quieran utilizar como un complemento de las actividades desarrolladas en clase, sin embargo, en la evaluación se deben incluir aspectos que van más allá de la medición de aspectos cuantitativos y cualitativos. Algunos de los aspectos que se deben tener en cuenta antes de desarrollar cualquier proceso de evaluación que se consideran importantes, son los siguientes:

- Se debe generar una delimitación de la situación, o nivel de referencia del objeto que se pretende evaluar.
- Se deben establecer una serie de criterios de evaluación que permitan realizar una evaluación uniforme para todo lo que se quiere evaluar. La definición de estos criterios se debe hacer a partir de las intenciones educativas en el marco de las cuales se desarrollará la evaluación.
- Es importante sistematizar la información que se obtenga a partir del proceso de evaluación ya que así se puede tener un acceso más ágil a todos los datos.
- Una vez realizada la evaluación es importante desarrollar un proceso de retroalimentación de resultados, el cual permite hacer los ajustes y mejoras necesarios según al concepto del evaluador.

4. Enseñanza de Mecánica Clásica con ayuda de Software Educativo

El estudio y entendimiento de la Mecánica Clásica, tiene gran importancia dentro del proceso de formación tanto de licenciados en Física, Ingenieros, así como en el proceso de formación de personas de otras áreas del conocimiento independientemente de cual sea su nivel de educación; ya que al lograr una adecuada comprensión de los temas que se abordan en esta área, se están desarrollando habilidades útiles para los estudiantes en su futuro; por ejemplo: se potencia la comprensión de situaciones problema y sus estrategias para resolverlas, lo que le permitiría a los estudiantes afrontar situaciones similares más no iguales de una forma correcta.

Es aquí donde es importante utilizar las diversas herramientas tecnológicas que se encuentran al alcance tanto de docentes como de estudiantes, como un material didáctico más, el cual, si se utiliza de la manera adecuada puede contribuir en gran medida a mejorar el proceso de
enseñanza- aprendizaje, sin embargo, se debe tener cierto cuidado con el uso que se le dé al Software Educativo en el aula de clase, lo primero que se debe aclarar es que estos materiales no son un sustituto de los docentes, sencillamente son herramientas didácticas que, como los libros, son facilitadores del proceso de comunicación docente-estudiante.

Partiendo del hecho de que la Mecánica Clásica es una asignatura con una carga experimental importante, la cual en muchas ocasiones ayuda a comprender mejor los fenómenos estudiados, el empleo de Software Educativo facilita la observación de fenómenos que no son posibles de observar en el laboratorio, permite comprobar resultados experimentales y/o modificar parámetros a través de simulaciones, o simplemente aporta información de temáticas que se estudiaria en clase. Además se deben aprovechar ciertas características que pueden acelerar el proceso de análisis y apropiación de un tema particular, por ejemplo: la rapidez en la adquisición y procesamiento de datos, la velocidad en la realización de cálculos, la cantidad de información que se encuentra acerca de un tema determinado, entre otros, independientemente se esté en un contexto escolar o universitario.

Al igual que otras ramas de la Física, la mecánica clásica y particularmente su enseñanza se pueden valer de distintos tipos de software educativo como una herramienta didáctica que ayude al entendimiento de los diferentes conceptos involucrados en esta tarea.

Sin embargo, hay que saber cuándo se debe utilizar el software educativo y en qué proporción se debe recurrir a él, adicionalmente se debe establecer el momento adecuado para su implementación y el tipo de software más adecuado; permitiendo que realmente ayude a mejorar la apropiación de los conceptos por parte del estudiante; en este punto el docente debe realizar una evaluación previa del software que le ayude a ponderar su utilidad y pertinencia, estableciendo en qué medida su implementación ayudará al mejor desarrollo de su clase, por ejemplo, si una simulación puede ser utilizada como un complemento a la explicación del movimiento del centro de masa de un sistema de partículas, o si una animación permite que el estudiante mejore su comprensión del movimiento; ya que cada docente es el responsable de su clase es él quien debe decidir cuál es el papel que desempeñarán los diferentes tipos de Software Educativo en sus clases.

Teniendo en cuenta que el proceso de enseñanza y aprendizaje es un proceso largo y complejo que involucra un gran número de factores, en el cual se debe conseguir que los estudiantes logren construir su conocimiento de una forma articulada e integrada con su entorno, para que así puedan ver de una manera más sencilla la importancia del conocimiento adquirido, es importante que encuentren en las herramientas tecnológicas -utilizadas tan frecuentemente en otros contextos distintos al educativo- una herramienta facilitadora que los motive e invite a conocer más de los temas relacionados con la ciencia, en este caso, de la Física y particularmente de Mecánica Clásica, para así poder alcanzar un verdadero aprendizaje significativo, por medio del cual los estudiantes pueden contextualizar los conocimientos adquiridos desarrollando su agilidad mental para poder adaptarlos a diferentes situaciones.
5. Presentación de los parámetros para la evaluación de Software Educativo de Física

Cuando se habla de evaluar la calidad de un Software Educativo determinado, es necesario incluir algunos parámetros relacionados con su funcionamiento y rendimiento, con el contenido de éste, así como con los objetivos que se busca cumplir con su implementación, asociados con aspectos pedagógicos. De igual forma, es importante tener la posibilidad de evaluar ciertos parámetros relacionados con el diseño gráfico del software, los cuales permiten evaluar que tan fácil de manejar y atractivos resultan para los usuarios (Muñoz 2007).

A continuación se presentan los principales aspectos que se deben tener en cuenta para realizar una evaluación integral del software Educativo. Para una mayor comprensión se puede observar el esquema que se presenta en la figura 1. El cual muestra los parámetros que se deben tener en cuenta con miras a lograr una evaluación integral de la calidad del Software Educativo.

![Diagrama de parámetros de evaluación](image)

Fig. 1. Aspectos que se deben incluir en la evaluación de Software Educativo.

I-Elementos tecnológicos

Los elementos tecnológicos hacen referencia principalmente a la manera en que funciona el software, para ello, se pueden utilizar una serie de criterios como lo son: funcionalidad, interoperabilidad, facilidad de instalación, seguridad, tolerancia a fallos, facilidad de uso, eficiencia en el uso de recursos, capacidad de mantenimiento, entre otros.

II-Elementos pedagógicos

Los elementos pedagógicos se refieren principalmente a aquellos elementos que contribuyen al mejoramiento del proceso enseñanza-aprendizaje a partir de un software Educativo determinado. Los elementos pedagógicos que más se deben tener en cuenta son:

1. Especificación del objetivo pedagógico. Hace referencia a si se menciona de forma explícita el objetivo para el cual fue diseñado el Software.
2. Número y tipo de medios usados. Hace referencia a la cantidad y al tipo de elementos utilizados para el funcionamiento o como complemento del Software, por ejemplo videos, applets, Links con Páginas Web, animaciones, entre otros, dependiendo del Software Educativo que se esté utilizando.
3. Tipo y nivel de interactividad. Hace referencia a la forma en que el software le permite al usuario interactuar con éste, ya sea introduciendo diversas variables o llevándolo a otras páginas por medio de vínculos, entre otros.

4. Nivel de autonomía. Hace referencia a si el software se puede utilizar de forma autónoma, o es necesario contar con la asesoría del docente para poder utilizarlo.

Posibilidad de experimentación. Se refiere a si se plantean simulaciones experimentales a realizar a partir del uso del software.

III- Elementos de Contenido
Los elementos de contenido hacen referencia a la complejidad con que es abordado el tema, el nivel de detalle con que se explica, la extensión que se requiere para esta, entre otros. Los más relevantes son:

- Confiabilidad de la fuente. Hace referencia a la fiabilidad de la fuente de donde se obtiene la información que contiene el software; siempre es importante poder contactar al autor del software en caso de que se presente alguna duda.
- Extensión del contenido. Se busca establecer si la extensión de las actividades planteadas en el software es la adecuada.
- Complejidad del tema. Hace referencia al nivel de educación para el cual está diseñado el software, nivel básico, universitario u otro.

Nivel de detalle de la información. Se refiere al nivel de detalle con que se presenta la información, es decir, se utilizan ecuaciones o no dentro del Software, y se explica el porqué de utilizar esas ecuaciones y no otras, por ejemplo.

IV- Elementos del diseño gráfico
Al igual que los elementos de contenido y los pedagógicos, los elementos de diseño gráfico son muy importantes al momento de evaluar la calidad de un software educativo, ya que gracias a un buen manejo de estos últimos se podría llamar la atención del usuario o por el contrario, si se utilizan mal, se podría desmotivar al usuario sin importar si la información que proporciona el software es correcta. Entre los principales aspectos de diseño que se deben tener en cuenta, se tienen:

1. Uso adecuado de colores y fuentes. Hace referencia a la forma de combinar las fuentes y los colores de fondo dentro del Software Educativo. Si no se logra hacer una combinación adecuada, no se llamará la atención del usuario.
2. Distribución del contenido. Se refiere a la forma en que se distribuye el contenido a lo largo del Software Educativo.
3. Simetría de los elementos. Se refiere a la forma en que se distribuyen algunos elementos como botones, Links, menús contextuales, entre otros.

6. Conclusiones
Una vez presentados los principales elementos para la realización de la evaluación de Software Educativo, se puede llegar a las siguientes conclusiones

- Evaluar de manera objetiva la calidad y pertinencia de un software educativo al momento de su implementación requiere definir parámetros o criterios que permitan realizar esta
labor de manera integral.

- Las diferencias en los tipos de Software Educativo hacen necesaria la determinación de parámetros de calidad correspondientes a cada tipo de software con el fin de lograr objetividad en el proceso de evaluación.

- Las tecnologías de la información y la comunicación no se pueden tomar como un sustituto de los docentes, por el contrario se deben utilizar como herramientas didácticas en las cuales se pueden apoyar los docentes para el mejor desarrollo de sus clases y así conseguir una mejor comprensión por parte de los estudiantes, en ese sentido definir parámetros de evaluación contribuirá a su correcta implementación en el aula de clase.

- El establecimiento de parámetros para la evaluación de Software Educativo, permite que tanto docentes como estudiantes analicen las ventajas o desventajas que puede tener la implementación de software como una herramienta didáctica en el proceso de enseñanza-aprendizaje de la Física.

Referencias Bibliográficas.

Título: RAZONAR EN FÍSICA, LA CONTRIBUCIÓN DEL SENTIDO COMÚN, 2002. PRIMERA EDICIÓN.
Autora: Laurence Viennot.
Traducción al español: María José Pozo Municio
Idioma original: Frances, Ingles.
Titulo original: Raisonner en physique, la part du sens commun, 1996.

CONTENIDO:
PRIMERA PARTE. LAS GRANDES LÍNEAS.

SEGUNDA PARTE. EL IMPACTO DEL SENTIDO COMÚN. ALGUNOS ESTUDIOS.

CONCLUSIÓN.
BIBLIOGRAFÍA

En esta reseña presentamos una síntesis del contenido del libro. Para ello fue elaborada una tabla de capítulos donde se hace una corta introducción a cada uno de ellos, y se tomaron algunos cuadros y figuras del libro para ilustrar los comentarios que sintetizan los resultados de las investigaciones presentadas por la autora Laurence Viennot.
Síntesis

El principal objetivo de la autora en este libro es caracterizar, por medio de ejemplos, el pensamiento natural o común en física en contraposición del conocimiento científico. Ella presenta sus resultados de investigación en la enseñanza francesa de temas como óptica elemental; mecánica Newtoniana; electricidad; termodinámica; entre otros. L.V.: “la ciencia se propone instalar, junto a la forma de pensar natural, un serio rival cuya coherencia y poder de predicción parezcan superiores”.

Tabla 1.

<table>
<thead>
<tr>
<th>PRIMERA PARTE: Las grandes líneas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capítulo 1. Lo esencial y lo natural</td>
</tr>
<tr>
<td>Capítulo 2. Una tendencia del razonamiento: materializar los elementos de la física. Ejemplos en óptica elemental</td>
</tr>
<tr>
<td>Capítulo 3. Mundo real, ¿magnitudes intrínsecas?</td>
</tr>
<tr>
<td>Capítulo 4. Lo esencial: leyes para magnitudes en un "t dado"</td>
</tr>
<tr>
<td>Capítulo 5. Análisis de las evoluciones de sistemas: “cuasi-estáticos” o causales</td>
</tr>
</tbody>
</table>
SEGUNDA PARTE: El impacto del sentido común. Algunos estudios

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capítulo 6. Magnitudes, leyes y codificación</td>
<td>Otro aspecto del razonamiento común, aparte de atribuir un carácter intrínseco a las magnitudes son las predicciones falsas sobre los fenómenos físicos. Este apartado trabaja sobre la codificación de las magnitudes algebraicas.</td>
</tr>
<tr>
<td>Capítulo 7. Cambiar de sistema de referencia a los 11 años</td>
<td>Se presentan los razonamientos a una edad temprana, más específicamente a los 11 años, al final de la enseñanza primaria, con relación a la temática trabajado en el capítulo 3.</td>
</tr>
<tr>
<td>Capítulo 8. Razonamiento común en relación con el sonido</td>
<td>Se centra en el razonamiento común en acústica, en relación con las dificultades en el estudio de la propagación de una señal transversal en una cuerda. Se trabaja sobre el interrogante, ¿Los razonamientos comunes de tipo mecanicista que están en el origen de algunas de estas dificultades se manifiestan también para señales no visibles, que se propagan con velocidades sensiblemente más altas?</td>
</tr>
<tr>
<td>Capítulo 9. Constantes y reducción funcional</td>
<td>Se distinguen 2 puntos de vista sobre las variables y las constantes, el carácter numérico y funcional.</td>
</tr>
<tr>
<td>Capítulo 10. Rotación y traslación ¿Simultaneidad?</td>
<td>Se tiene en cuenta las dificultades en función al razonamiento común y a las características de la enseñanza recibida a partir de los problemas con diversas variables.</td>
</tr>
<tr>
<td>Capítulo 11. De la electrostática a la electrocinética, dificultades históricas y actuales</td>
<td>Se realiza una génesis historica del concepto de circuito eléctrico y se investiga sobre el razonamiento histórico y actual en función a circuitos (cerrado y abierto) inspirado en el dispositivo experimental de De La Rive, la carga y el potencial.</td>
</tr>
<tr>
<td>Capítulo 12. Superposición de los campos eléctricos y causalidad</td>
<td>Después de realizar entrevistas a estudiantes universitarios se plantean dos obstáculos relacionados con el análisis causal, donde la causa y el efecto tienen una relación restrictiva, se hace fundamental preguntarse si para los estudiantes el campo eléctrico de la electrostática tiene algo que ver con la electrocinética.</td>
</tr>
</tbody>
</table>

Capítulo 1. Lo esencial y lo natural. No se trata de definir las formas correctas del pensamiento común (Ilustración 1), tampoco asociar el error al saber común o a los razonamientos no ortodoxos, sino centrar el interés sobre las desviaciones que presenta sobre la sabiduría erudita, o sea, generar indicadores del razonamiento común en cuanto a lo falso o lo exacto en relación con la teoría admitida: buscar reglas que den cuenta de la física de todos.
La investigación se enfoco a los contenidos de la disciplina, los fracasos en la enseñanza reconocidos colectivamente y los capítulos de los libros, pero se hizo necesario definir nuevos enfoques no tenidos en cuenta tradicionalmente orientados hacia el saber común y la coherencia de los argumentos. Para concluir y afirmar en el campo de la enseñanza se hace necesario experimentar, investigar, considerar variables y reflexiones; la investigación presentada muestra que una reflexión sobre lo esencial y lo natural inspira objetivos y estrategias de enseñanza. Puntos a discutir:

- Capítulo 2. Una tendencia del razonamiento: materializar los elementos de la física. Ejemplos en óptica elemental. La descripción de los fenómenos en términos de magnitudes y leyes es producto de un proceso de abstracción para la construcción de conceptos, donde las nociones familiares pierden utilidad; por tal razón la teoría óptica principalmente, se caracteriza por que sus conceptos son producto de procesos de construcción y abstracción. Se muestra la investigación desarrollada para identificar tendencias del razonamiento común en la tabla 1. Desde el razonamiento natural existe una tendencia a
analizar los fenómenos de manera reducida, o sea, la idea de objeto material se usa para analizar conceptos abstractos «tendencia a materializar los objetos del pensamiento».

<table>
<thead>
<tr>
<th>Tabla 3. Aspectos del razonamiento en óptica.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conceptos trabajados</td>
</tr>
<tr>
<td>Rayos luminosos, Propagación de la luz</td>
</tr>
<tr>
<td>Imagen óptica</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>El color</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

En óptica la tendencia es hacia objetos poco naturales, un haz de luz o la sensación de color no pesan, lo cual impide que se atribuya al razonamiento una substancialización de los conceptos: la idea de que las
magnitudes de la física se construyen y no vienen inherentes a la realidad, no es natural, este grado de objeto material de los conceptos es en pocos términos un obstáculo sustancialista; de ahí que los elementos conceptuales para la comprensión y explicación de un fenómeno óptico se vuelvan esenciales.

Se vuelve útil conocer cuando la observación contradice el razonamiento natural, como en el caso de los rayos luminosos, la imagen óptica y el color expuestos en la tabla anterior, trabajando de manera explícita sobre el sentido y la coherencia de los conceptos enseñados poniendo especial énfasis sobre la intuición.

-Capítulo 3. Mundo real, ¿Magnitudes intrínsecas? Los sistemas de referencia son utilizados en física para asociar a un suceso un lugar y un tiempo, o sea, su posición \((x,y,z)\) y un tiempo \((t)\); el estudio con sistemas de referencia confirma la tendencia común de considerar las magnitudes como características intrínsecas de los objetos, mostrando dificultades en el estudio de conceptos como velocidad, distancia, trayectoria y dirección en función del sistema de referencia, y generalmente aparecen más marcadas cuando hay cambios en los sistemas de referencia galileanos.

Por ejemplo, en el único caso en que la velocidad no se considera intrínseca por el razonamiento común, es cuando aparece un arrastre, pero el hecho de que este se considere como causa de movimiento implica pensar que la velocidad desaparece y de igual forma la “conexión física”; el razonamiento común hace una interpretación de acuerdo a la forma en que se aprende de la experiencia.

-Capítulo 4. Lo esencial: leyes para magnitudes en un "a dado". Se debe romper la idea profunda de que la fuerza es independiente de la velocidad, así como la atribución de la fuerza al objeto, y enfocarse en asociar la fuerza como una variación de la velocidad. Habitualmente en dinámica se asocia al concepto de temporal a la idea de causalidad, como si una causa explíciese necesariamente el por qué del origen, en donde la causa precede los efectos en el tiempo. “La fuerza de” pone de manifiesto una causa inicial, en donde ésta se convierte en la razón del movimiento en cualquier instante, lo cual lleva a una deslocalización en el tiempo de las magnitudes implicadas en el fenómeno, aspectos característicos en el razonamiento común.

Figura 3. Puntos cruciales en la enseñanza de la dinámica.
Capítulo 5. Análisis de las evoluciones de sistemas: “cuasi-estáticos” o causales. Los sistemas físicos ponen de manifiesto diversas variables o magnitudes que describen por medio de las leyes de manera fenomenológica los sub-sistemas o sus relaciones entre uno y otro; estas magnitudes se pueden modificar en el transcurso del movimiento ya que todo se da simultáneamente, todo el sistema recibe información simultáneamente para un análisis cuasi-estático. Se muestra como y porque sabemos describir los cambios de estado mas no se sabe explicarlos; la complejidad del análisis espacial y de variables se desarrolla uno seguido del otro, aunque se debe optar por trabajar en que el dominio este en un razonamiento multifuncional ya que la física está hecha de varias variables que interactúan todos entre sí, tema a ser trabajado en la enseñanza de la física. Nuevamente “cualitativo no es sinónimo de relajado”.

Capítulo 6. Magnitudes, leyes y codificación. En física se acostumbra a designar magnitudes para caracterizar los fenómenos estudiados, para tal fin se hace necesario un proceso de codificación para distinguir magnitudes algebraicas; los valores numéricos están directamente relacionados con los números racionales y con la unidad, ejemplo 2,7 Amperios o -2,7 Amperios. En el razonamiento común es natural pensar el mundo con valores positivos que con negativos, de allí que sea mejor decir a 10 de profundidad que a una altura de –10, entonces surge una dificultad, y es que si se esfuerza el pensamiento en el mas, hay que reformular o mas bien redefinir las relaciones. Lo cual muestra dificultades en la manipulación del formalismo matemático, una propuesta para facilitar la utilización del formalismo matemático y la comprensión de los mecanismos es el uso de flechas que definen magnitudes y que describen de manera semi-figurativa una situación concreta.

Capítulo 7. Cambiar de sistema de referencia a los 11 años.

Figura 4.
La imagen muestra los resultados arrojados por la investigación en cuanto a lo que tiene y debería tener el razonamiento en los niños en función a los cambios en el sistema de referencia. El interés en el cambio de sistema de referencia debe estar enfocado al objetivo de la enseñanza, y particularmente en introducir la idea de que la teoría admitida lleva a comprender las cosas de manera unificada y que permite hacer predicciones, aunque se debe ser muy cuidadoso en cómo se muestra el formalismo de la teoría.

- **Capítulo 8. Razonamiento común en relación con el sonido.** El razonamiento referente a una señal propagándose en una cuerda y la propagación del sonido tienen raíces muy similares, hasta se distinguen por que su dificultad o forma de analizarlos es mediante un razonamiento lineal causal (cap. 5). La propagación debe tener una causa anterior, la cual resulta ser la fuente de la señal y la que se almacena a medida que cambia el movimiento. Lo cual muestra como en anteriores investigaciones la tendencia de un razonamiento lineal causal, para lo cual se debe trabajar muy profundamente la mecánica de los sólidos y la de las señales, en cuanto a conceptos como velocidad, amplitud y la influencia del medio.

- **Capítulo 9. Constantes y reducción funcional.** De la característica del razonamiento lineal causal se distingue un aspecto muy importante y es el hecho de trabajar una sola variable a la vez. Cuando se manipulan variables se utiliza el formalismo algebraico, luego la autora distingue dos puntos de vista respecto a esto: el **numérico** y el **funcional**, el primero consiste en usar relaciones en un cálculo algebraico y el segundo que limita a una magnitud a la otra y viceversa. En la enseñanza se ha visto que la idea de la dependencia funcional con diferentes variables es muy poco trabajada, prefiriendo las prácticas reductoras y que finalmente desembocan en independencia de las variables al sistema global.

- **Capítulo 10. Rotación y traslación ¿Simultaneidad?** Los resultados obtenidos se enmarcan en función a la ley fundamental de la dinámica, la traslación y la rotación de un sólido. Se trabaja con el movimiento de un disco sobre una mesa en el cual se ejerce una fuerza constante. Se encuentra los siguientes razonamientos comunes sobre cuestiones formulada a los estudiantes universitarios referentes al sólido:

![Figura 5. Razonamientos comunes sobre el sólido.](image)

Existe una tendencia a estudiar por separado los fenómenos de traslación, luego rotación y finalmente la deformación, en donde se hace una marcada simplificación y atemporalidad del movimiento.
Capítulo 11. De la electrostática a la electrocinética, dificultades históricas y actuales. Se parte con una construcción histórica de la electrocinética, en seguida de una investigación a estudiantes sobre el paso de la electrostática a la electrodinámica. Se llega a la conclusión que las dificultades actuales al pasar de electrostática a electrocinética ha perdurado en el tiempo, desde el punto de vista histórico los fenómenos relativos al flujo de cargas se han analizado por medio de la electrostática, teniendo en cuenta las situaciones de circuito cerrado ya que la distinción de circuito abierto y cerrado no era significativa: causalidad polar, en cuanto al punto de vista actual los razonamientos se basan en intuición sobre la electrostática, no se ve relevancia a circuito abierto o cerrado ya que el razonamiento se enfoca hacia los polos como aislados, mostrando que el razonamiento es muy semejante. Concluyendo así que el factor más común es la actitud de focalización de los polos.

Capítulo 12. Superposición de los campos eléctricos y causalidad. Los dos obstáculos surgen como rasgos del razonamiento común:

1. La causa existe más que en el caso de un efecto. Rechazo de la existencia de un campo en un punto en el que las cargas no pueden circular.

2. Atribución de un estatuto causal a las formulas. No tomar en cuenta la contribución al campo eléctrico total de las cargas cuyo valor no figura explícitamente en la expresión del campo.

Con lo anterior se hace un análisis de factores que ofrece resultados para re-pensar la enseñanza de la física, en aspectos como:

☑ Toma de conciencia del profesor y de los alumnos respecto a las dificultades enunciadas en la investigación.

☑ Guía para la elaboración de actividades pedagógicas, y lo más fundamental,

☑ Claridad sobre los objetivos de enseñanza.
La Revista Virtual “Góndola”, revista de Enseñanza y Aprendizaje de las Ciencias, (Góndola, Ens.Apr.Cien.), promueve la relación entre investigación y docencia en el ámbito de la enseñanza y el aprendizaje de las ciencias naturales y las matemáticas. El principal objetivo es ofrecer una fuente de enriquecimiento profesional, tanto para los profesores en ejercicio como para quienes se están formando como docentes del área.

Se busca contribuir con la formación del “profesor-investigador”, y de igual modo contribuir en la construcción de una masa crítica frente a los diversos saberes que hoy circulan en la comunidad académica. Así, se espera ofrecer un espacio para la publicación y difusión de las diversas experiencias e investigaciones que se adelantan con el fin de mejorar procesos, y a la vez, ofrecer una fuente de consulta y material de trabajo para docentes e investigadores del área.

Los trabajos presentados para publicación deben ser enviados de acuerdo al “Artículo modelo” y las orientaciones presentes en la dirección <www.udistrital.edu.co/comunidad/grupos/gef/gondola.html>. Debido al carácter virtual de la Revista, la extensión de los artículos puede variar entre 10 y 20 páginas, estos no deben tener “Derechos de Autor” otorgados a terceros a la fecha de envío del artículo y los conceptos y opiniones dados en ellos son de exclusiva responsabilidad de los autores. De igual manera, el autor acepta que el trabajo enviado es de tipo original, que no ha sido publicado ni está siendo considerado para publicación en otra revista. “Góndola, Ens.Apr.Cien.”, puede hacer uso del artículo, o parte de él, con fines de divulgación y difusión de la actividad científica y tecnológica, sin que esto signifique que se afecte la propiedad intelectual de los autores.

Los trabajos deberán incluir; título, nombres de los autores, resumen, palabras claves, introducción, desarrollo, resultados, discusión y/o conclusiones, y referencias bibliográficas. Dentro del texto se pueden incluir tablas, fotografías y figuras. El nombre de los autores debe ir acompañado del correo electrónico, con un pie de página que contenga la afiliación completa. El resumen no debe exceder 300 palabras en la versión en español y la cantidad que corresponda en la versión en Inglés manteniendo el mismo contenido. La introducción debe contener la justificación, problema a resolver, metodología, y principales conclusiones. Las Referencias deben listarse en orden alfabético por el apellido del primer autor, sin numeración ni guiones. No se debe usar la palabra Bibliografía como sinónimo de Referencias bibliográficas y evitar citar trabajos no publicados. El formato debe obedecer a las indicaciones presentadas en el “Modelo de artículo” disponible online.

Todo artículo sometido a publicación, será analizado previamente por el editor, para determinar si está dentro del ámbito y aplicación de la revista. De ser así, se enviará para el consejo editorial en donde pasarán por el sistema de revisión ciega de pares académicos. La revisión por el editor puede tomar de una a dos semanas, y la revisión por pares académicos puede tomar de 2 a 4 semanas.

La publicación de la revista se hace en los meses de Julio y Diciembre en la dirección electrónica www.udistrital.edu.co/comunidad/grupos/gef/gondola.html
Con mis maestros he aprendido mucho; con mis colegas, más; con mis alumnos todavía más.
Proverbio Hindú