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Abstract

In the context of constant-rate fluid-flow
traffic estimation, it has been shown that there
is a minimum probing traffic rate at which the
dispersion exhibits correlation with cross traffic,
so both probing packet length and input gap
must be adjusted to reach that minimum.
However, here we show evidence that, with
highly variable traffic, it is possible to have very
short probing packets at a very low rate and
still get an important correlation between
dispersion and traffic, over a long range of
measurement time scales, even when the
utilization factor is low.

Keywords: Long range dependence, packet
pair probing, cross-traffic estimation

Efectos de la alta variabilidad del trá-

fico en trazas de dispersión de pa-

quetes de prueba

Resumen

En el contexto de la estimación de tráfico
fluido en redes de comunicaciones, se ha de-
mostrado que existe una mínima tasa de tráfi-
co de prueba a la cual las medidas de disper-
sión están correlacionadas con el tráfico cruza-
do, de manera que tanto la longitud de los pa-
quetes de prueba como el tiempo de transmi-
sión entre ellosse deben ajustar paraq alcanzar
ese mínimo. En este artículo mostramos evi-
dencia de que, con tráfico variable, es posible
usar paquetes de prueba pequeños a una tasa
baja conservando una correlación significativa
entre las medidas de dispersión y el tráfico, en
un amplio rango de escalas, aún con un bajo
factor de utilización del enlace.

Palabras clave: Dependencia de rango
amplio, pruebas de pares de paquetes, estima-
ción de tráfico cruzado.

1. Introduction

Several network parameters and traffic
conditions can be inferred from packet
dispersion measurements [1]. In an active
probing scheme, a sender transmits packets of
given length at given instants of time and a
receiver collects them, taking note of their
arrival times. Under heavy load conditions, these
measurements can be used to infer the cross-
traffic over the tight-link in a path [3]. In other
case, although the dispersion measurements will
still be lightly correlated with the tight-link
cross-traffic, there will not be a formula for
an exact inference. So, under these conditions,
most techniques prefer to ignore the
corresponding measurements.

Pathrate[2], for example, is an end-to-end
capacity measurement tool that sends thousands
of probing packet pairs to discover different
modes in the bandwidth distribution. Since
capacity should not depend on cross-traffic,
the hope is that some of those thousands of
packets find an idle narrow link, in which case
one of the distribution modes will correspond
to capacity and not to traffic effects.
Pathload[7]. estimates the available bandwidth
of an end-to-end path sending probing packets
at an increasing rate. When packet dispersions
start to increase steadily with rate, we are
supposed to be transmitting at the available
bandwidth rate. ToPP[6]. and PathChirp[4]. are
conceptually similar to pathload, but they try
to be more efficient in searching the knee of
the rate/delay curve. TOPP separates probing
packets in time and estimates available
bandwidth through the average of dispersion
measures observed at the receiver. Pathchirp
uses an exponentially increasing rate chirp
probing train so that, with a single train, it
probes the network over a range of  rates. Both
ToPP and PathChirp achieve similar accuracy
to pathload but with smaller overhead.
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However, while ToPP ignores the delay
correlation information contained in packet
trains, Pathchirp tries to exploit this fundamen-
tal information. Delphi [5]. is similar to Pathrate
in using chirp probing trains but, instead of
using the self-congestion principle of  pathchirp,
it estimates a multifractal wavelet model of the
bandwidth. Other measuring techniques and
tools include Capprobe[9], Spruce[10]. and
IGI/PTR, among many others.

For a specific example consider IGI/PTR
where, initially, the time between probe packet
transmissions that gives a high correlation
between packet dispersion measurements and
cross-traffic rate on the tight link is determined.
They assume implicitly that the path is carrying
a constant-rate fluid cross-traffic, so it varies
the probing transmission rate in order to find
the turning point at which the probing-packet
dispersion begins to be affected by cross-
traffic. We use this criterion considering that,
for a highly variable traffic, the turning point
can move above and below the constant probe
transmission rate, due to cross traffic variations.
So, for short-term estimations, we can fix a
(rather low) probing transmission rate and use
every single dispersion measurement as an
important source of  information about cross-
traffic competing for the tight link. We maintain
that, instead of ignoring those measurements
during which the tight-link becomes idle, the
reduced correlation that still exists between
those dispersion measurements and the bursty
cross-traffic over that link can be exploited
successfully. Indeed, recently we reported an
efficient, accurate and timely cross-traffic
estimator based on this principle [8].

In section 2 we show that, for a given average
cross-traffic arrival rate, the higher the variability
the greater the probability that two consecutive
probe packets belong to the same occupation
period, no matter whether the variability comes
from the variance in the number of arrivals and/
or from the correlation structure of the arrival
rate. In section 3 we verify experimentally that,
for a given average arrival rate, the higher the
variability the greater the correlation between
cross-traffic arrival rate and packet dispersion
measurements, even when consecutive probe
packets do not belong to the same occupation
period. Then we conclude the paper and
propose some future work.

2. Effects of high variability in the

probability of an exact estimation

When a pair of probing packets is sent
through an unloaded link of capacity C bps,
so that the second packet arrives before the
first one has finished its transmission, the
dispersion between them at the receiver will
be D=L/C, where L is the packet length in
bits. However, if  there is some cross-traffic
competing for the link usage, the measured
dispersion will be given by D=(L+X)/C,
where X is the number of cross-traffic bits
received during the transmission of the first
probe packet. Accordingly, we can estimate the
average cross-traffic rate, in bits per second,
as λ´ = (D . C 

_
 L) / (L / C).

If the inter-arrival time is greater than L/C,
say T, there will be several possibilities. In the
easiest case, the queue does not empty between
the departure of the first packet and the arrival
of the second packet, in which case the
dispersion D will be L/C plus the time taken to
transmit the cross-traffic that arrived during T.
Consequently, we can estimate the average cross-
traffic rate during that period of length T as

Another case is when there is no cross-traffic,
in which case both packets find an empty queue
and the dispersion is D = T. However, this
dispersion measure occurs whenever the cross-
traffic is small enough to be completely
transmitted between probe packet arrivals
(among other unlikely events, as the case in
which the queue does not empty and the ave-
rage arrival rate is exactly C - L/T, or when
both probing packets find the same number
of bits in queue). In other cases, when one or
both packets find a non-empty queue but there
are empty periods between the departure of
the first packet and the arrival of the second
packet, the dispersion will be a random varia-
ble more or less correlated with the cross-traffic
process, depending on the fraction of time the
queue was empty.

So, in order for Equation (1) to be an exact
estimator of the cross-traffic arrival rate, the
queue should not empty between the departure
of the first packet and the arrival of the second
packet, i.e. they must belong to the same
occupation period of  the channel. For this to
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happen we need one of the following
conditions:

1. The first packet finds more than C×T –
L bits in the queue. In this case, even if
there is no cross traffic during T, by the
time the first packet is done with its
transmission, the second packet will be
already in queue.

2. The first packet finds X
0
 bits in the queue,

with 0 d» X
0
 < C×T – L, and the cross

traffic generates X
1
 > C×T – L – X

0
 bits

during the period (X
0
+L)/C.

3. The first packet finds X
0
 bits in the queue,

with 0 d» X
0
 < C×T – L, and the cross

traffic generates X
1
 < C×T – L – X

0
 bits

during the period (X
0
+L)/C and X

2
 >

C×T – L – X
0
 – X

1
 bits during the period

X
1
/C.

4. Etc.

Let F
1
(×) be the stationary CDF of the length

of the queue in bits (as seen by the first probe
packet) and F

2
(× ; t) be the CDF of the

number of  arriving bits during t seconds. The
above decomposition leads to the following
recursive expression for the probability of a
pair of probing packet belonging to the same
occupation period of the system:

We consider two types of  independent
arrivals. In the first one, the number of  arrivals

in a time unit obeys a Poisson distribution with
mean γ, characterized by an exponentially
decaying tail. The second one is a Pareto-like
distribution given by
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which exhibits a power-law decaying tail with
finite mean γ and infinite variance. To obtain
equation (3) we consider a continuous Pareto
distribution with parameters a = 1.1 and b=γ/
10, and consider the probability of unit
intervals, as shown in equation (4).
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Figure 1 shows the probability that two
consecutive probing packets belong to the
same occupation period as a function of ρ,
for both types of arrivals, according to
equation (2). The high variability of the traffic,
represented here by a heavy tailed distribution,
leads to a better cross traffic estimation because
equation (1) is exact for a longer period of
time compared to an exponentially decreasing
tail distribution.

2.2 Effects of long-range-dependence

To consider a high variability represented
with a long-range-dependent arrival process
we can use, for example, a fractional Brownian
motion {A(t), t≥0} with Hurst parameter 0.5
< H < 1 to model the number of arrivals in
the interval (0, t].  Figure 2 shows the
corresponding results for the probability that
two consecutive probing packets belong to the
same occupation period as a function of ρ,
for different Hurst parameters and different
probing rates, according to equation (2). The
small probabilities (as compared to those of
figure 1) are easily understood when we consider
both the fluid flow arrivals and the fact that we
used very small variances in order to avoid
negative samples. This way, these results are due
exclusively to the LRD property of the traffic.
Clearly, the probability increases with H, the
source of variability we wanted to test.

Next we will evaluate iteratively the
expression above under different conditions
of  variability, where the variability will be
measured both as the variance of an
independent traffic process, and as the
correlation structure of a Long Range
Dependent process. In any case, the evaluation
converges after a few iterations.

2.1 Effects of variance

Consider a discrete time channel in which
the time unit is the (deterministic) service time
of each packet. The number of arrivals during
a time unit is an independent random variable
with average γ, which is the utilization factor
of the channel. Probing packets of length zero
are sent every T∈N units of time.
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Figure 1. Probability that two consecutive probing packets belong to the same occupation
period under Poisson arrivals and Pareto-like arrivals with independent increments

corresponding packet dispersion measure, D
n
.

In order to allow both a high variance and a
high Hurst parameter, we use synthetic traces
from a multi-fractal wavelet model. The results,
shown in figure 4, correspond to the coefficient
of correlation between X

n
 and D

n
 as function

of  the average utilization of  the link, ro, and
the time-scale measurement, T.

As we increase the variability through the
coefficient of variation (C = 1,2,4), the
correlation becomes less dependent on the ave-
rage utilization factor, ro. Similarly, as we increase
the variability through the Hurst parameter (H
= 0.5, 0.65, 0.8, 0.95), the correlation becomes
less dependent on T as well. For example, the
case (C=1, H=0.5), roughly a Poisson traffic,
exhibits high correlation only for very small
measurement timescale, T, and high utilization
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3. Effects of variability in the

correlation between cross-traffic

and dispersion measurements

We have just evaluated equation (2) for traffic
with high variance but independent increments,
and for a long range dependent traffic but with
very small variance. Now we consider the
combined effect of variance and LRD through
simulation experiments of a single queue, as
shown in Figure 3. A C-bps link carries a cross-
traffic, characterized by a given coefficient of
variation and a given Hurst parameter, along
with a probing traffic consisting of L-bits long
packets sent every T seconds. We want to
know how much correlation is there between
the average cross-traffic arrival rate between
the nth and the (n+1)st probing packets (the nth

measurement period), X
n
, and the

Figure 2. Probability that two consecutive probing packets belong to the same occupation period under Gaussian
arrivals with long-range dependent increments
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Figure 3. Scenario for highly variable cross-traffic estimation

factors, ro. On the contrary, the case (C=4, H=0.95) exhibits
a high correlation for almost any average utilization factor in
a wide range of  measurement timescales. Correspondingly,
as traffic variability increases, we can test the link over a
wide range of time scales obtaining a high correlation
between the dispersion measures and the cross-trafic arrival
rate, even with a low utilization factor.

Figure 4. Correlation coefficient between the dispersion
measurements and the cross traffic arrival rate.
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4. Conclusions

In estimating highly variable cross-traffic through probing
packet pair dispersion measurements, it is possible to use
every single measurement as an important source of
information, even when both packets belong to different
occupation periods. This result brings the possibility of
designing high efficiency estimators by avoiding the waste
of  measurements of  current methods. Indeed, in [8] we
report a simple cross-traffic estimator that exploits these
characteristics using a computational intelligence approach
to infer the cross-traffic rate from the dispersion
measurements.
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