Theory of Complex Systems
Marco Aurelio Alzate Monroy

Deterministic Fractals

Doctoral Program in Engineering Information and Knowledge Sciences
District University Francisco José de Caldas
In nature, smooth shapes are extremely rare, in fact, quite exceptional. Mountains are not triangles and clouds are not spheres.

Benoit Mandelbrot

III Encuentro Interuniversitario de Complejidad
Bogotá, 2008
¿Another geometry?

• The primary forms are not directly constructed, like straight lines, circles, triangles, etc.

• ... They are more like a set of procedures (algorithms) to rotate, shift, re-scale and/or distort an original shape.
Affine transformations in \(\mathbb{R}^2 \)

\[
\begin{bmatrix}
x_{n+1} \\
y_{n+1}
\end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_n \\ y_n \end{bmatrix} + \begin{bmatrix} e \\ f \end{bmatrix}
\]

- Rotate
- Scale
- Distort
- Displace

A simple translation by \((dx,dy)\)
A simple resizing by \((a,b)\), with translation -if \(ab=1\), preserves the area-

\[
\begin{bmatrix}
 x_{n+1} \\
 y_{n+1}
\end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x_n \\
 y_n
\end{bmatrix} + \begin{bmatrix} dx \\
 dy
\end{bmatrix}
\]

Shearing parallel to \(x\)
Shearing parallel to y

Rotation by an angle θ
We can iterate a simple affine transformation:

\[
\begin{bmatrix}
 x_{n+1} \\
 y_{n+1}
\end{bmatrix} = \begin{bmatrix}
 0.9 & -0.1 \\
 0.1 & 0.9
\end{bmatrix}
\begin{bmatrix}
 x_n \\
 y_n
\end{bmatrix} + \begin{bmatrix}
 0.1 \\
 0.0
\end{bmatrix}
\]

Iterated Function System

```matlab
xy = [0 0; 1 0; 1 1; 0 1; 0 0]';
A = [0.9 -0.1; 0.1 0.9];
b = repmat([0.1; 0.0],1,5);
for i = 1:100
    plot(xy(1,:),xy(2,:)); hold on
    xy = A*xy + b;
end
```
Four interesting (?) affine transformations in \mathbb{R}^2:

1. $\begin{bmatrix} x_{n+1} \\ y_{n+1} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0.16 \end{bmatrix} \begin{bmatrix} x_n \\ y_n \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

2. $\begin{bmatrix} x_{n+1} \\ y_{n+1} \end{bmatrix} = \begin{bmatrix} 0.85 & 0.04 \\ -0.04 & 0.85 \end{bmatrix} \begin{bmatrix} x_n \\ y_n \end{bmatrix} + \begin{bmatrix} 0 \\ 1.6 \end{bmatrix}$

3. $\begin{bmatrix} x_{n+1} \\ y_{n+1} \end{bmatrix} = \begin{bmatrix} 0.2 & -0.26 \\ 0.23 & 0.22 \end{bmatrix} \begin{bmatrix} x_n \\ y_n \end{bmatrix} + \begin{bmatrix} 0 \\ 1.6 \end{bmatrix}$

4. $\begin{bmatrix} x_{n+1} \\ y_{n+1} \end{bmatrix} = \begin{bmatrix} -0.15 & 0.28 \\ 0.26 & 0.24 \end{bmatrix} \begin{bmatrix} x_n \\ y_n \end{bmatrix} + \begin{bmatrix} 0 \\ 0.44 \end{bmatrix}$
Nature’s geometry

Starting with \(x = (0.5, 0.5) \):

\[
\text{plot}(x)
\]

with prob. 0.01, \(x \leftarrow A_1 x + b_1 \);
with prob. 0.85, \(x \leftarrow A_2 x + b_2 \);
with prob. 0.07, \(x \leftarrow A_3 x + b_3 \);
with prob. 0.07, \(x \leftarrow A_4 x + b_4 \);

Repeat until we have enough dots

\[
X=\text{zeros}(2,120000);
X(:,1)=[0.5; 0.5];
A1 = [0.00 0.00; 0.00 0.16]; b1 = [0.0; 0.00];
A2 = [0.85 0.04; -0.04 0.85]; b2 = [0.0; 1.60];
A3 = [0.20 -0.26; 0.23 0.22]; b3 = [0.0; 1.60];
A4 = [-0.15 0.28; 0.26 0.24]; b4 = [0.0; 0.44];
\]

\[
\text{for } k=1:119999
\]
\[
\begin{align*}
&\, r=\text{rand}; \\
&\quad \text{if } \quad r<.01, \, A = A1; \, b = b1; \\
&\quad \text{elseif } \, r<.86, \, A = A2; \, b = b2; \\
&\quad \text{elseif } \, r<.93, \, A = A3; \, b = b3; \\
&\quad \text{else} \quad A = A4; \, b = b4; \\
&\end{align*}
\]
\[
X(:,k+1) = A*X(:,k) + b;
\]
\[
\text{end}
\]
\[
\text{scatter}(X(1,:),X(2,:),2,'g')
\]
\[
\text{axis equal}
\]
X = zeros(2, 120000);
X(:,1) = [0.5; 0.5];
A1 = [0.195 -0.488; 0.344 0.443]; b1 = [0.4431; 0.2452];
A2 = [0.462 0.414; -0.252 0.361]; b2 = [0.2511; 0.5692];
A3 = [-0.637 0.000; 0.000 0.501]; b3 = [0.8562; 0.2512];
A4 = [-0.035 0.070; -0.469 0.022]; b4 = [0.4884; 0.5069];
A5 = [-0.058 -0.070; 0.453 -0.111]; b5 = [0.5976; 0.0969];
for k = 1:119999
 r = rand;
 if r < 0.2, A = A1; b = b1;
 elseif r < 0.4, A = A2; b = b2;
 elseif r < 0.6, A = A3; b = b3;
 elseif r < 0.8, A = A4; b = b4;
 else A = A5; b = b5;
 end
 X(:, k+1) = A*X(:, k) + b;
end
scatter(X(1,:), X(2,:), 2, 'k');
axis equal

Nature’s geometry
X=zeros(2,120000);
X(:,1)=[0.5; 0.5];
A1 = [0.387 0.430; 0.430 -0.387]; b1 = [0.2560; 0.5220];
A2 = [0.441 -0.091; -0.009 -0.322]; b2 = [0.4219; 0.5059];
A3 = [-0.468 0.020; -0.113 0.015]; b3 = [0.4000; 0.4000];
for k=1:119999
 r=rand;
 if r<.333, A = A1; b = b1;
 elseif r<.666, A = A2; b = b2;
 else
 A = A3; b = b3;
 end
 X(:,k+1) = A*X(:,k) + b;
end
scatter(X(1,:),X(2,:),2,'g')

X=zeros(2,120000);
X(:,1)=[0.5; 0.5];
A1 = [0.50 0.00; 0.00 0.75]; b1 = [0.25; 0.00];
A2 = [0.25 -0.20; 0.10 0.30]; b2 = [0.25; 0.50];
A3 = [0.25 0.20; -0.10 0.30]; b3 = [0.50; 0.40];
A4 = [0.20 0.00; 0.00 0.30]; b4 = [0.40; 0.55];
for k=1:119999
 r=rand;
 if r<0.25, A = A1; b = b1;
 elseif r<0.50, A = A2; b = b2;
 elseif r<0.75, A = A3; b = b3;
 else
 A = A4; b = b4;
 end
 X(:,k+1) = A*X(:,k) + b;
end
scatter(X(1,:),X(2,:),2,'g')
axis equal
Homework # 3

A. Spend no more than one hour of your time trying to modify the self-affine IFS of the left to generate the best romanescu broccoli you can 🤣
Not only plants

```
X=zeros(2,250000);
X(:,1)=[0.5; 0.5];
A1 = [ 0.75  0.00;  0.00  0.75]; b1 = [0.125; 0.125];
A2 = [ 0.50 -0.50;  0.50  0.50]; b2 = [0.500; 0.000];
A3 = [ 0.25  0.00;  0.00  0.25]; b3 = [0.000; 0.750];
A4 = [ 0.25  0.00;  0.00  0.25]; b4 = [0.750; 0.750];
A5 = [ 0.25  0.00;  0.00  0.25]; b5 = [0.000; 0.000];
A6 = [ 0.25  0.00;  0.00  0.25]; b6 = [0.750; 0.000];
for k=1:249999
    r=rand;
    if r<0.1667,     A = A1; b = b1;
    elseif r<0.3333, A = A2; b = b2;
    elseif r<0.5,    A = A3; b = b3;
    elseif r<0.6667, A = A4; b = b4;
    elseif r<0.8333, A = A5; b = b5;
    else
        A = A6; b = b6;
    end
    X(:,k+1) = A*X(:,k) + b;
end
scatter(X(1,:),X(2,:),2,'k')
axis equal
```

Symmetry and growth
In many growth processes of living organisms, especially of plants, regularly repeated appearances of certain multicellular structures are readily noticeable.... In the case of a compound leaf, for instance, some of the lobes (or leaflets), which are parts of a leaf at an advanced stage, have the same shape as the whole leaf has at an earlier stage.... Organic form itself is found, mathematically speaking, to be a function of time.... We might call the form of an organism an event in space-time, and not merely a configuration in space... The idea of the form implicitly contains also the history of such a form.
L-Systems: Formal grammar and rewriting

- Chomsky’s formal grammar: Rewriting to describe the syntactic features of natural languages (1950’s)
- Backus and Naur: Rewriting-based notation provides a formal definition of computer programming languages (algol, 1960’s)
- The recognition of the equivalence started a period of fascination with syntax, grammars and their application to computer science (1970’s)
L-Systems: Rewriting

- Rewriting: define complex objects by successively replacing parts of a simple initial object using a set of rewriting rules.
- The classic example is the snowflake curve proposed in 1905 by von Koch, which Mandelbrot restates as follows:
 - One begins with two shapes, an initiator and a generator. The latter is an oriented broken line made up of N equal sides of length r. Thus each stage of the construction begins with a broken line and consists in replacing each straight interval with a copy of the generator, reduced and displaced so as to have the same end points as those of the interval being replaced.
L-Systems: Rewriting

- A tree grows from a seed: How can new cells be generated from old cells?
- The seed cell is known as an *axiom*
- The instructions of how to grow new cells are known as *production rules*
- For example,

 Axiom: B
 Rules: $B \rightarrow F-B+B$, $F \rightarrow FF$

<table>
<thead>
<tr>
<th>Depth</th>
<th>String</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>$F-B+B$</td>
</tr>
<tr>
<td>2</td>
<td>$FF-(F-B+B)+(F-B+B)$</td>
</tr>
<tr>
<td>3</td>
<td>$FFFF-(FF-(F-B+B)+(F-B+B))+(FF-(F-B+B)+(F-B+B))$</td>
</tr>
</tbody>
</table>
L-Systems: Rewriting

<table>
<thead>
<tr>
<th>Depth</th>
<th>String</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>F-B+B</td>
</tr>
<tr>
<td>2</td>
<td>FF-(F-B+B)+(F-B+B)</td>
</tr>
<tr>
<td>3</td>
<td>FFFF-(FF-(F-B+B)+(F-B+B))+(FF-(F-B+B)+(F-B+B))</td>
</tr>
</tbody>
</table>
function Tortuga(delta,Axioma)
 x0 = 0; y0 = 0; distancia = 10; angulo = 0;
i = 1;
clf
 while Axioma(i)~='.'
 switch Axioma(i)
 case 'f'
 x1 = x0 + distancia*cos(angulo);
y1 = y0 + distancia*sin(angulo);
 plot([x0 x1],[y0 y1])
 case 'l'
 angulo = angulo + delta;
 case 'r'
 angulo = angulo - delta;
 end
 i = i+1;
 end
end

function SistemaCasiL(delta,Generador,Axioma,n)
 while n>1
 buffer = '';
 for i=1:length(Axioma)
 if Axioma(i) == 'f'
 buffer = [buffer Generador];
 else
 buffer = [buffer Axioma(i)];
 end
 end
 Axioma = buffer;
 n = n-1;
 end
Axioma = [Axioma '.'];
Tortuga(delta,Axioma)

function secuencia(delta,Generador,Axioma)
 for n=1:5
 SistemaCasiL(delta,Generador,Axioma,n);
drawnow
 pause(1)
 end
% Copo de nieve de Von Koch
delta = pi/3;
Generador = 'flfrrflf';
Axioma = 'f';

% Crecimiento de moho
delta = pi/2;
Generador = 'flfrfrflf';
Axioma = 'f';
Otro crecimiento cristalino

\[
delta = \pi/2;
\]

Generador = 'flfrfrflf';

Axioma = 'flf1f1f1';
On axioms, grammar rules and theorems

This is everything about mathematics

\[A_1, A_2, \ldots, A_k \] - axioms and previously proved theorems

Formal proof of a sentence \(P \) is a sequence of statements

\[S_1, S_2, \ldots, S_n \]

where:

1. \(S_n \) is \(P \) and one of the following holds:
 2a. \(S_i \) is one of \(A_1, A_2, \ldots, A_k \)
 or
 2b. \(S_i \) follows from the previous statements by a valid argument using the rules of reasoning (grammar rules)

Example: Let \((\Omega, \mathcal{F}, P) \) be a probability space.

Axioms: (1) \(P(\Omega) = 1 \)
(2) If \(A \in \mathcal{F} \), \(P(A) \geq 0 \)
(3) If \(A, B \in \mathcal{F} \), and \(A \cap B = \phi \), then \(P(A \cup B) = P(A) + P(B) \).

Theorem: If \(A \subseteq B \), \(P(A) \leq P(B) \).

Proof: \(B = A \cup (B \cap A^C) \)

\[P(B) = P(A) + P(B \cap A^C) \]
\[P(B \cap A^C) \geq 0 \]
\[P(B) \geq P(A) \].
Homework # 3

B. A formal system consists of the symbols M, I and U, along with some grammar rules to construct strings from previously known ones.

Axiom: MI
Grammar rules: 1. If xI, then xIU
2. If Mx, then Mxx
3. if xIIIy then xUy
4. if xUUy then xy

Homework: Prove MU, if it is possible (where x and y is any sequence – even an empty sequence – of symbols M, I and/or U)

1. If xI, then xIU
2. If Mx, then Mxx
3. If $xIIIy$ then xUy
4. If $xUUy$ then xy
1. If xI, then xIU
2. If Mx, then Mxx
3. If $xIIIy$ then xUy
4. if $xUUy$ then xy
1. Si xI, entonces xIU
2. Si Mx, entonces Mxx
3. Si $xIIIy$ entonces xUy
4. Si $xUUy$ entonces xy

Etc.
% Otro crecimiento cristalino
delta = pi/2;
Generador = 'flfrfrflf';
Axioma = 'flf1flf1l';
Yet another algorithm to construct the same fractal
The Cantor Set

How many intervals are there in the Cantor set?

At the \(n^{th} \) step, we remove \(2^n \) intervals, each of length \(3^{-(n+1)} \)

Total length of removed intervals:

\[
\frac{1}{3} \sum_{n=0}^{\infty} \left(\frac{2}{3} \right)^n = \frac{1}{3} \left(\frac{1}{1-\frac{2}{3}} \right) = 1
\]

Can we count the number of isolated points in the Cantor set?

Yes, they are the limits of the intervals.... Sure?
The Cantor Set

Those isolated points are not only the end points of middle third intervals. For instance, many points (like $\frac{1}{4}$) are never removed from the Cantor set, despite they are not the end points of middle third intervals:
Indeed, let us represent the end points in base 3:

\[
0.\overline{2}_3 = \sum_{n=1}^{\infty} \frac{2}{3^n} = \frac{2}{3} \sum_{n=0}^{\infty} \left(\frac{1}{3} \right)^n = \frac{2}{3} \left(\frac{1}{1 - \frac{1}{3}} \right) = 1
\]
Which points do belong to the Cantor set?

The Cantor set consists of those points \(c \in [0, 1] \) that have no 1’s in their base-3 expansion.

Not only the end points of middle third intervals:

\[
0.02_3 = 2 \sum_{n=1}^{\infty} \frac{1}{3^{2n}} = \frac{2}{9} \sum_{n=0}^{\infty} \left(\frac{1}{9} \right)^n = \frac{2}{9} \left(\frac{1}{1 - \frac{1}{9}} \right) = \frac{1}{4}
\]
How many points are there in the Cantor set?

To answer this question it is interesting to learn how to count:

• Two sets X and Y are said to have the same *cardinality* (number of elements) if there is an invertible mapping that pairs each element $x \in X$ with precisely one $y \in Y$: one-to-one correspondence.

• If a set X can be put into one-to-one correspondence with the natural numbers, $N = \{1, 2, 3, \ldots\}$, X is said to be countable.

• For instance, the even natural numbers, $E = \{2, 4, 6, \ldots\}$, is countable through the invertible mapping $f(n) = 2n$. Hence, there are exactly as many even numbers as natural numbers, although we might think there would be only half as many, because odd numbers are missing. 😊
How many elements are there in countable sets?

- Equivalently, a set X is said to be countable if it can be written as a list $X = \{x_1, x_2, x_3, \ldots \}$ with every $x \in X$ appearing somewhere in the list, i.e., given any $x \in X$, there is some finite $n \in \mathbb{N}$ such that $x_n = x$.

- A convenient way to exhibit such a list is to give an algorithm that systematically associates the index n with the element $x_n \in X$.

- For example: Are the integers $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots \}$ countable?
 - Find a clever way to start: it would not be helpful to go one way from zero and, after finishing in that direction, come to zero again to begin on the other way: we will never reach the end of the first half.
 - This is a better way to go: $\mathbb{Z} = \{z_1 = 0, z_2 = 1, z_3 = -1, z_4 = 2, z_5 = -2, z_6 = 3, z_7 = -3, \ldots \}$
 - Since every particular integer will appear eventually, integers are countable: There are as many integers as naturals, not twice.
 - Indeed, the position of the integer z is $n(z) = \begin{cases} 1 & z = 0 \\ 2z & z > 0 \\ 1 - 2z & z < 0 \end{cases}$

- Show that the positive rational numbers are countable
 - Wrong way to go: $Q = \{1/1, 1/2, 1/3, 1/4, 1/5, \ldots \}$. We will never finish the $1/n$’s, so numbers like $2/3$ will never be counted.
 - Any suggestion?
 - There are as many rational numbers as natural numbers!
How many real numbers are there?

- Cantor showed that real numbers are uncountable:
 - By contradiction. If they are countable, we could list the numbers in the interval \([0, 1]\) as a set \(\{x_1, x_2, x_3, x_4, \ldots\}\).
 - Let us write these numbers in binary form:
 - \(x_1 = 0. x_{11}x_{12}x_{13}x_{14} \ldots\)
 - \(x_2 = 0. x_{21}x_{22}x_{23}x_{24} \ldots\)
 - \(x_3 = 0. x_{31}x_{32}x_{33}x_{34} \ldots\)
 - \(\ldots\)
 - where \(x_{ij}\) is the \(j^{th}\) binary digit of the \(i^{th}\) real number
 - The contradiction is obtained by finding a number \(r \in [0, 1]\) that is not in the list.
 - The first digit of \(r\) is \(1-x_{11}\)
 - The second digit \(1-x_{22}\)
 - \(\ldots\)
 - The \(i^{th}\) digit of \(r\) is \(1-x_{ii}\).
 - Then \(r\) is not in the list because it differs from each number in the list at least by one binary place.

- The real numbers are not countable: There are MORE real numbers than natural numbers! Some infinities are bigger than others!
Cantor’s Transinfinities

- \aleph_0 is the smallest infinite: the number of natural numbers
 - Hilbert’s Hotel
 - $\aleph_0 = a + \aleph_0 = \aleph_0 + \aleph_0 = a\aleph_0 = \aleph_0$

- \aleph_1 is the cardinality of the set of subsets of countable sets, 2^{\aleph_0}

Continuum Hypothesis: $\aleph_1 = 2^{\aleph_0}$

- is the smallest cardinality bigger than \aleph_0
- i.e., there is no set \mathcal{I} with cardinality $\aleph_0 < |\mathcal{I}| < \aleph_1 = 2^{\aleph_0}$
How many points are there in the Cantor set?

Why Cantor’s mental health became weak...

- The Cantor set consists of those points \(c \in [0, 1] \) that have no 1’s in their base-3 expansion, so they only have 0’s and 2’s.
- By changing each 2 in the base-3 expansion of the elements of the Cantor set by a 1, we get all the binary numbers in the interval \([0, 1]\), expressed in binary.
- This is just a one-to-one correspondence between the Cantor set and the real interval \([0, 1]\)!
- We just found a set of ISOLATED POINTS in the interval \([0, 1]\) that have as many elements as the whole CONTINUOUS interval!

- … Obviously, Cantor went crazy! It was 1900, Mandelbrot was not there and fractals were “mathematical monsters”

- Fractals present many paradoxes like this
Some properties of the Cantor set

\[
C = \bigcap_{k=0}^{\infty} \bigcup_{i=0}^{(3^k - 1)/2} \left[\frac{2i}{3^k}, \frac{2i+1}{3^k} \right] = \left\{ x \in [0,1] : x = \sum_{k=0}^{\infty} a_k 3^{-k}, a_k \in \{0,2\} \right\}
\]

- The Cantor set is self-similar: contains copies of itself at infinitely many scales.

\[
C = \left\{ 3^k x - 2i : x \in C \cap \left[\frac{2i}{3^k}, \frac{2i+1}{3^k} \right] \right\}_{k=0,1,2,...,i\in\{0,1,2,...,(3^k-1)/2\}}
\]

- The Cantor set has a fine structure: contains detail at arbitrarily small scales.

- Despite its intricate detailed structure, the Cantor set is easily defined through a simple recursive procedure.

- The geometry of the Cantor set is not easily described in classical terms: it is not the set of points that solve any equation, for example.

- Although the Cantor set has an uncountably infinite number of points, its length is zero.
How to measure an arc length

Basically, ignores details smaller than an increment ε and then considers what happen when $\varepsilon \to 0$.

$$L = \int_a^b \sqrt{1 + \left(f'(x) \right)^2} \, dx$$
For example, the Koch curve

The length of Koch curve is

\[\lim_{n \to \infty} \left(\frac{4}{3} \right)^n = \infty \]

The area under Koch curve is

\[\sum_{n=1}^{\infty} N_T(n) A_T(n) = \frac{\sqrt{3}}{20} \]

This figure has an infinite perimeter, but an area of only \(\frac{5 - \sqrt{3}}{5} \) m²
The length of the circulatory system is 80 millions meters!

The length of lung alveoli is 350000 meters!

The surface of human brain is 6 square meters!

Nature’s frugality requires fractal structures
This was the big popular inspiration

“Why this text came to be written? It was intended to be a “Trojan” horse allowing a bit of mathematical esoterica to “infiltrate” surreptitiously hence near-painlessly, the investigation of the messiness of raw nature. Today, it means that everyone knows how to answer the question raised in this paper's title. And the notion of fractal dimension is very widely known and used.”
How long is the coast of Britain?

Unit = 200 km,
Length = 2400 km

Unit = 100 km,
Length = 2800 km

Unit = 50 km,
Length = 3400 km
Informally, the dimension of an object is the minimum number of coordinates needed to specify each point within it.

- Dimension 0 \(\{0\} \)
 - Measure: Number of points

- Dimension 1 \((x) \)
 - Measure: Length

- Dimension 2 \((x,y) \)
 - Measure: Area

- Dimension 3 \((x,y,z) \)
 - Measure: Volume

- Dimension 4 \((w,x,y,z) \)
 - Tesseract
 - (Shadow of a 4-dimensional hypercube)
The Cantor set is composed of isolated points in the interval \([0, 1]\), but it has as many elements as the whole continuous interval!

The area under the Von Koch curve is only \((\sqrt{3})/20\) m\(^2\), but it has an infinite length.

The dimension of the Cantor set cannot be 1, but should be greater than zero, since its length is zero and its number of points is uncountable infinity.

The area under the Von Koch curve cannot be 2, but should be greater than one, since its area is zero and its length is infinity.
(One) Concept of Dimension
(through self-similarity)

$r = \frac{1}{3}, N = 3, D = 1$

$r = \frac{1}{3}, N = 9, D = 2$

$r = \frac{1}{3}, N = 27, D = 3$

$r = \frac{1}{2}, N = 2, D = 1$

$r = \frac{1}{2}, N = 4, D = 2$

$r = \frac{1}{2}, N = 8, D = 3$

$r = \frac{1}{2}, N = 2, D = 1$

$r = \frac{1}{3}, N = 9, D = 2$

$r = \frac{1}{3}, N = 27, D = 3$

$$N = r^{-D} \Rightarrow D = \frac{\log(N)}{\log(1/r)}$$
Dimension of self-similar fractal figures

$N = 2, \quad r = 1/3, \quad D = \log(2)/\log(3) = 0.63$

$N = 4, \quad r = 1/3, \quad D = \log(4)/\log(3) = 1.26$

$N = 8, \quad r = 1/4, \quad D = \log(8)/\log(4) = 1.5$

$N = 3, \quad r = 1/2, \quad D = \log(3)/\log(2) = 1.58$
Dimension of some fractals

- Cantor set : 0.631
- Cantor set in 3D : 1.893
- Julia set(1/4) : 1.081
- Peano curve : 2
- Z-order curve : 2
- Moore curve : 2
- Menger sponge : 2.727
- Von Koch curve : 1.262
- Lorenz attractor : 2.06
Dimension of some natural fractals

Coastline of Great Britain: 1.25
Coastline of Norway: 1.52
Diffusion limited aggregation: 1.7
Galaxy clusters: 2
Cauliflower: 2.33
Crumpled paper: 2.5
Lichtenberg lamp: 2.5
Broccoli: 2.66
Surface of human brain: 2.79
Lung alveoli: 2.97

How can these dimensions be measured or computed if the objects are not exactly self-similar?
The concept: Hausdorff dimension

• Previous definitions of
 – Euclidean dimension
 – self-similar dimension

• ... are simply versions of the true “fractal dimension”
 – Hausdorff dimension

• To begin with, let us define the Hausdorff measure
δ-cover of a set

- If U is any non-empty subset of the n-dimensional Euclidean space, \mathbb{R}^n, …
- … the diameter of U is defined as
 \[|U| = \sup \{ |x - y| : x, y \in U \} \]
- If $\{U_i\}$ is a countable collection of sets of diameter at most δ that cover F, i.e.,
 \[F \subset \bigcup_{i=1}^{\infty} U_i \]
- … with $0 \leq |U_i| \leq \delta$ for each i, …
- … we say that $\{U_i\}$ is a **δ**-cover of F
1-cover of the Koch curve

$N(1) = 1$
½ - cover of the Koch curve

\[N(\frac{1}{2}) = 3 \]
¼ - cover of the Koch curve

\[N(¼) = 5 \]
1/7 - cover of the Koch curve

N(1/7)=11
1/12 - cover of the Koch curve

\[N(1/12) = 22 \]
δ - cover of the Koch curve, $\delta = 1/88$

$N(1/88)=244$
Hausdorff measure

• Suppose F is a subset of \mathbb{R}^n, and s is a non-negative number. For any $\delta > 0$ we define

$$H^s_\delta(F) = \inf \left\{ \sum_{i=1}^{\infty} |U_i|^s : \{U_i\} \text{ is a } \delta \text{-cover of } F \right\}$$

• As δ decreases, the class of permissible covers of F is reduced, so the infimum increases and, so, approaches a limit as $\delta \to 0$:

$$H^s(F) = \lim_{\delta \to 0} H^s_\delta(F)$$

s-dimensional Hausdorff measure of set F
$\delta = 1/7, s = 1$

$$\sum_{i=1}^{12} \delta^i = 12\delta \quad \checkmark$$

$$\sum_{i=1}^{11} \delta^i = 11\delta \quad \checkmark$$

$$\sum_{i=1}^{10} \delta^i = 10\delta \quad \times$$

$$H_{1/7}^1(F) = \inf \left\{ \sum_{i=1}^{\infty} |U_i|^1 : \{U_i\} \text{ is a (1/7)-cover of } F \right\} = \frac{11}{7}$$
\[H^1_1(F) = \inf \left\{ \sum_{i=1}^{\infty} |U_i| : \{U_i\} \text{ is a (1)-cover of } F \right\} = 1 \cdot 1^1 = 1 \]
\[H^2_1(F) = \inf \left\{ \sum_{i=1}^{\infty} |U_i|^2 : \{U_i\} \text{ is a (1)-cover of } F \right\} = 1 \cdot 1^2 = 1 \]
\[H^1_{0.5}(F) = \inf \left\{ \sum_{i=1}^{\infty} |U_i| : \{U_i\} \text{ is a (0.5)-cover of } F \right\} = 3 \cdot 0.5^1 = 1.5 \]
\[H^2_{0.5}(F) = \inf \left\{ \sum_{i=1}^{\infty} |U_i|^2 : \{U_i\} \text{ is a (0.5)-cover of } F \right\} = 3 \cdot 0.5^2 = 0.75 \]
\[H^1_{0.25}(F) = \inf \left\{ \sum_{i=1}^{\infty} |U_i| : \{U_i\} \text{ is a (0.25)-cover of } F \right\} = 5 \cdot 0.25^1 = 1.25 \]
\[H^2_{0.25}(F) = \inf \left\{ \sum_{i=1}^{\infty} |U_i|^2 : \{U_i\} \text{ is a (0.25)-cover of } F \right\} = 5 \cdot 0.25^2 = 0.3125 \]
\[H^1_{0.143}(F) = \inf \left\{ \sum_{i=1}^{\infty} |U_i| : \{U_i\} \text{ is a (0.143)-cover of } F \right\} = 11 \cdot 0.143^1 = 1.573 \]
\[H^2_{0.143}(F) = \inf \left\{ \sum_{i=1}^{\infty} |U_i|^2 : \{U_i\} \text{ is a (0.143)-cover of } F \right\} = 11 \cdot 0.143^2 = 0.2245 \]
\[H^1_{0.083}(F) = \inf \left\{ \sum_{i=1}^{\infty} |U_i| : \{U_i\} \text{ is a (0.083)-cover of } F \right\} = 22 \cdot 0.083^1 = 1.83 \]
\[H^2_{0.083}(F) = \inf \left\{ \sum_{i=1}^{\infty} |U_i|^2 : \{U_i\} \text{ is a (0.083)-cover of } F \right\} = 22 \cdot 0.083^2 = 0.153 \]
\[H^1_{0.0114}(F) = \inf \left\{ \sum_{i=1}^{\infty} |U_i| : \{U_i\} \text{ is a (0.0114)-cover of } F \right\} = 244 \cdot 0.0114^1 = 2.773 \]
\[H^2_{0.0114}(F) = \inf \left\{ \sum_{i=1}^{\infty} |U_i|^2 : \{U_i\} \text{ is a (0.0114)-cover of } F \right\} = 244 \cdot 0.0114^2 = 0.0315 \]
The Hausdorff measure

\[H^s(F) = \lim_{{\delta \to 0}} H_\delta^s(F) \]

Can (and use to) be 0 or \(\infty \)
\(H^0(F) = \) Number of points
\(H^1(F) = 0 \)

\(H^0(F) = \infty \)
\(H^1(F) = \) Length of the curve
\(H^2(F) = 0 \)

\(H^1(F) = \infty \)
\(H^2(F) \propto \) Area of the surface
\(H^3(F) = 0 \)

\(H^2(F) = \infty \)
\(H^3(F) \propto \) Volume of the body
\(H^4(F) = 0 \)
Towards Hausdorff dimension

- Since
 \[H^s_\delta(F) = \inf \left\{ \sum_{i=1}^{\infty} |U_i|^s : \{U_i\} \text{ is a } \delta\text{-cover of } F \right\} \]

- for any \(\delta < 1 \), \(H^s_\delta(F) \) does not increase with \(s \). Consequently
 \[H^s(F) = \lim_{\delta \to 0} H^s_\delta(F) \]
does not increase with \(s \).

- Furthermore, since
 \[\sum_i |U_i|^t = \sum_i |U_i|^{t-s} |U_i|^s \leq \delta^{t-s} \sum_i |U_i|^s \]
- the infimum must also obey this relation
 \[H^t_\delta(F) \leq \delta^{t-s} H^s_\delta(F) \]
- So, in the limit,
 \[
 \text{if } H^s(F) < \infty, \quad H^t(F) = 0 \quad \forall \ t > s
 \]
The Hausdorff dimension is defined as:

$$\dim_H(F) = \inf \{ s \geq 0 : H^s(F) = 0 \} = \sup \{ s \geq 0 : H^s(F) = \infty \}$$

Does not say anything about $H^{s*}(F)$. It could be 0, ∞, or any intermediate number, but it is normally too hard to compute. Many (MANY) recent math papers still address the Hausdorff measure of the Cantor set, which came up to be $H^{s*}(C) = 1$.
Box dimension

• Cover the set with boxes of size ε

$$N(\varepsilon) \propto \frac{L}{\varepsilon}$$

• As with smooth lines, surfaces and solid objects, one can expect the dimension of a set to equals the exponent d in the power law

$$N(\varepsilon) \propto \frac{1}{\varepsilon^d}$$
Box dimension

\[d = \lim_{\varepsilon \to 0} \frac{\ln(N(\varepsilon))}{\ln \left(\frac{1}{\varepsilon} \right)} \]

• Find the box dimension of the Cantor set

 – Let \(S_n \) be the set at the \(n^{th} \) step of Cantor set construction.
 – For each \(n \), the \(2^n \) intervals of size \(3^{-n} \) of \(S_n \) cover the Cantor set.
 – Using \(\varepsilon = 3^{-n} \), we need \(N(\varepsilon) = 2^n \).
 – As \(n \to \infty \), \(\varepsilon \to 0 \)

\[d = \lim_{n \to \infty} \frac{\log(2^n)}{n \log(3)} = \frac{n \log(2)}{n \log(3)} = \frac{\log(2)}{\log(3)} = 0.631 \]
Finding the box-dimension of a 2D fractal set

% Carga y despliega la imagen original
p = imread('Fractal_Broccoli.jpg');
figure(1); imshow(p)

% detecta los bordes sobre la imagen B&N
p = edge(double(im2bw(p,graythresh(p))));
figure(2); imshow(p)

[Nx, Ny] = size(p); % Tamaño de la imagen
nBloques = [25 50 75 100 125 150]; % Número de bloques
NB = length(nBloques);
tabla = zeros(NB,1);
for fg = 1:NB
tamanoBloque_x = floor(Nx./nBloques(fg));
tamanoBloque_y = floor(Ny./nBloques(fg));
ocupado = zeros(nBloques(fg),nBloques(fg));
for i = 1:nBloques(fg)
 xi = (i-1)*tamanoBloque_x + 1;
 xf = i*tamanoBloque_x;
 for j = 1:nBloques(fg)
 yi = (j-1)*tamanoBloque_y + 1;
 yf = j*tamanoBloque_y;
 bloque = p(xi:xf,yi:yf);
 ocupado(i,j) = any(bloque(:));
 end
end
tabla(fg) = nnz(ocupado);
figure(3); subplot(2,3,fg); imshow(ocupado);
end

eps = 0.04, N(eps) = 369
eps = 0.02, N(eps) = 1114
eps = 0.0133, N(eps) = 2055
eps = 0.01, N(eps) = 3091
eps = 0.008, N(eps) = 4082
eps = 0.0067, N(eps) = 5430
Finding the box-dimension of a 2D fractal set

\[x = \log(n\text{Bloques}); \]
\[y = \log(\text{tabla}); \]
\[p = \text{polyfit}(x, y, 1); \]
\[y1 = \text{polyval}(p, x); \]
\[\text{Dimension}_\text{de}_\text{Hausdorff} = p(1) \]

Dimension_de_Hausdorff = 1.4921
HOMEWORK # 4

1. The given files include 12 textures (from textura01.bmp to textural2.bmp) and 12 natural objects (3 flowers (or flower seeds), 3 clouds, 3 wood textures and 3 iris patterns, from prueba01.bmp to prueba12.bmp), as shown in Fig. 2. Compute the box-counting dimension of each image and discuss whether this parameter is a good discriminator to tell woods from clouds from flowers from irisises. Could you classify some of the original textures within your four classes?

Note 1. So far, we have used the box-counting dimension algorithm to compute the dimension of a rough line in a plane. But in this homework we have to compute the dimension of a rough surface in a 3D volume (the grey level gives the third Euclidean dimension), so we have to count 3D boxes, not 2D squares.

Note 2. If you have a set of geometrical 3D surfaces of your own in which you are interested because of your research project, please feel free to use it. All you have to do is to compute the box-counting dimension and decide if it is a good discriminator for different classes within your set (but using a surface in a 3D space instead of a line in a 2D space).

2. Compute the box-counting dimension of (a) a finite set of isolated points in the unit interval, (b) the unit interval in the real line and (c) the unit square in the plane.

3. What is the self-similar dimension of the set that results from taking out from the closed unit interval all the open sub-intervals whose decimal expansion includes the digit 5? (in the expansion, a 5 followed by an infinite number of 0’s is changed by a 4 followed by an infinite number of 9’s)

4. Starting with the unit interval, $I_0=[0,1]$, we define the following IFS

$$I_{n+1} = \{x/2: x \in I_n\} \cup \{(3+2x)/5: x \in I_n\}$$

What is the Hausdorff dimension of the set of points that is left after an infinite number of iterations?
* Last class, we used the BoxCounting algorithm to compute the dimension of a rough line in a plane. But if we consider a grey level 2D image as a 2D surface in a Euclidean 3D space, where the grey level gives the third Euclidean dimension, we could use the same method to count the boxes. The following text is taken from [Jian Lia, Qian Dub and Caixin Suna. “An improved box-counting method for image fractal dimension estimation” Pattern Recognition 42(2009) 2460-2469]:

“Consider an image of size $M \times M$ as a 3D spatial surface with (x,y) denoting pixel position on the image plane, and the third coordinate (z) denoting pixel gray level. In the DBC method, the (x,y) plane is partitioned into non-overlapping blocks of size $s \times s$, where $1 < s \leq M/2$ and s is an integer. N_s is counted in the DBC method using the following procedure. On each block there is a column of boxes of size $s \times s \times s'$, where s' is the height of each box, $G/s' = M/s$, and G is the total number of gray levels. For example, $s = s' = 3$ in Fig. 1. Assign numbers $1, 2, \ldots, G$ to the boxes as shown in Fig. 1. Let the minimum and maximum gray level in the $(i, j)^{th}$ block fall into the k^{th} and l^{th} boxes, respectively. The boxes covering this block are counted in the number as

$$n_s(i, j) = l - k + 1$$

where the subscript s denotes the result using the scale s. For example, $n_s(i, j) = 3 - 1 + 1$ as illustrated in Fig. 1. Considering contributions from all blocks, N_s is counted for different values of s as

$$N_s = \sum_{i,j} n_s(i, j)$$

Then the BCD can be estimated from the least squares linear fit of $\log(N_s)$ versus $\log(1/s)$”.
Gray intensity surface

Box 1

Box 2

Box 3

Image plane