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1. Classical Turing Instability

2. Turing Instability with nonlocal diffusion–Spectral theory

3. Chafee-Infante with nonlocal diffusion and an open problem!
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TURING PATTERNS

How do such beautiful patterns arise from a single
fertilized egg? How even is symmetry broken?
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First, I need to discuss
eigenvalues and eigenfunctions

of differential operators and see what that means for
the movement of a diffusing quantity.

You know about eigenvalues and eigenvectors of matrices:

Mϕ = λϕ.

Consider the movement of a spatially distributed heat
u(x, y; t) on a region Ω.
For simplicity, take Ω = [0, π]× [0, 2π].
With the notation,

∆u =
∂2u

∂x2
+
∂2u

∂y2
,

it can be argued that the heat moves through Ω according
to

∂u

∂t
= ∆u (HE)

and if the boundary of Ω is insulated, then
∂u

∂n
= 0 on ∂Ω.

Through “separation of variables” one finds that solutions
have the form
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u(x, y; t) =

∞∑
n=0

∞∑
m=0

cn,mcos(nx)cos(my/2)e−(n2+m2/4)t,

which we write

u(x, y; t) =

∞∑
n=0

∞∑
m=0

cn,mψn,m(x, y)e
−µn,mt,

or better still

u(x, y; t) =

∞∑
k=1

γkϕk(x, y)e
−λkt (Eig − Exp),

with 0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λk ≤ . . . .

Note that

∆ψn,m(x, y) = −(n2 + (m/2)2)ψn,m

so
∂ψn,m
∂t

= ∆ψn,m(x, y) = −(n2+ (m/2)2)ψ = −µn,mψn,m

and

ψ(x, y; t) = ψ(x, y; 0)e−µn,mt → 0 as t→ ∞.
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If, instead we consider

ut = ∆u + ρu,

then the eigenfunctions, ψn,m remain the same but the
eigenvalues, µn,m = λk, are increased by ρ and the solu-
tion becomes

u(x, y; t) =

∞∑
k=1

ϕk(x, y; 0)e
(ρ−λk)t.

What happens as t→ ∞?
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Consider the following system for d > 1
∂u

∂t
= ∆u + f (u, v),

∂v

∂t
= d∆v + g(u, v) in Ω× [0,∞),

∂u

∂n
= 0 =

∂v

∂n
on ∂Ω.

(1)

We assume that (p, q)T ∈ R2 is a stable equilibrium of
the kinetic system, that is,

f (p, q) = g(p, q) = 0 and Jac(f, g)(p, q)

has two eigenvalues with negative real parts.

Normally, we expect diffusion to favor (stabilize) constant
states. Consider the linearized R-D system

∂

∂t

(
u
v

)
=

(
1 0
0 d

)(
∆u
∆v

)
+

(
fu(p, q) fv(p, q)
gu(p, q) gv(p, q)

)(
u
v

)
.

(2)

Let
A = D∆+B (3)

where

D =

(
1 0
0 d

)
, B =

(
fu(p, q) fv(p, q)
gu(p, q) gv(p, q)

)
,
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and find the spectrum of A. We may look at the spectrum
of A as it operates on various Fourier modes:
Set

A(s) = Ds +B,

where s is the spectral parameter from ∆, so s ≤ 0 is of
relevance. Eigenvalues? Instability of some eigenmodes?

det[A(s)− λI ] = λ2 − b(s)λ + c(s),

where b(s) = (fu + gv)|(p,q) + s(1 + d),
c(s) = (fugv − fvgu)|(p,q) + s(dfu + gv)|(p,q) + ds2.
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Eigenvalues for different spatial modes:

s→ λ(s) such that detA(s) = 0 has two real branches
λ−(s) < λ+(s) for all s ≤ 0.

One can easily show that

λ−(s) is strictly increasing
and

λ+(0) < 0 but λ+(s) has a unique maximum λ+max
attained at some smax < 0.

Is this maximum positive?
i.e., is the smax mode unstable?
It is if we impose the Turing conditions:

(H1) fu|(p,q) > 0,

(H2) (fu + gv)|(p,q) < 0 < (fugv − fvgu)|(p,q),

(H3) (fu + gv)
2 − 4(fugv − fvgu)|(p,q) > 0.

(H4) (dfu + gv)|(p,q) > 0,

(H5) (dfu + gv)
2 − 4d(fugv − fvgu)|(p,q) > 0.
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Dispersion curve—Laplacian case

Temporal
Growth rate,

lambda

(0,0)

Spatial wave number, k

k*
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What motivated the work I want to describe is interest
in higher eigenvalues–

The (Alan) Turning instability → emergence of patterns
in chemical and biological systems morphogenesis.
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We can consider the system
du

dt
= duLu + f (u, v)

dv

dt
= dvLv + g(u, v)

and ask if Turing patterns emerge from a homogeneous
steady state which is stable under the kinetics, i.e.,
that state becomes unstable when ‘diffusion’ is added

For stability of a homogeneous steady state (p, q) under
kinetics: det Jac(f, g)(p, q) > 0, Tr Jac(f, g)(p, q) < 0.

Adding diffusion one is directed to consider the spectrum
of

diag(du, dv)L + Jac(f, g)(p, q).
in some function space.

First we need σ(L), but this is not easy to find for a
general kernel and a general domain.

Open problem 1. What is the spectrum of L?
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In Turing’s case L is the Laplacian

Dispersion curve—Laplacian case

Temporal
Growth rate,

lambda

(0,0)

Spatial wave number, k

k*
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Consider the case Ω = Rn with J normalized
∫
J = 1,

Lu(x) ≡
∫
Rn
J(x− y)u(y)dy − u(x).

Now rescale space and consider

Jε(x) ≡ ε−nJ(x/ε)

and write
Lεu(x) ≡

1

ε2
[Jε ∗ u− u]

then one might imagine that as ε→ 0, Lε → ∆.

Clearly this cannot be true since the difference between
the two operators is an unbounded operator. However,
even if J changes sign

Lemma (B-Chen-Chmaj, 2003, 2005)
For all ϕ ∈ H2(R)

Lεϕ→ cJ∆ϕ as ε→ 0,

where cJ =
∫
|z|2J(z)/2.
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Similarly, on a bounded domain Ω ⊂ Rn with

Lεu(x) ≡
1

ε2

∫
Ω

Jε(x− y)(u(y)− u(x))dy

(and with J≥ 0) the same result was proved by Cortazar,
et al in 2008. In this case ∆ is the Neumann Laplacian.

Lemma 1 (Cortazar, Elgueta, Rossi, Wolanski, ARMA
2008)
If

|(Lεkwk, wk)| ≤ C,

where ∥wk∥ = 1 and εk → 0, then {wk} is precompact
in L2, a subsequence converges to some w ∈ H1 and

Lεkwk converges weakly to cJ∆
Nw.

We want to know about the spectrum of Lε for Turing
instability. Notice that the previous lemmas give a sort of
pointwise (not operator) convergence only. Consequently,
it is a nontrivial question to ask if the spectrum of Lε is
close to that of cJ∆N .

It is clear that σ(Lε), σ(cJ∆N) ⊂ (−∞, 0], since both
operators are self-adj., 0 is in both spectra, and both op-
erators have numerical range in (−∞, 0].
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Actually, it is a trivial question, since the answer is NO!
(A bounded set cannot approximate an unbounded set)

HOWEVER, recall the essentials of the Turing
instability:

Dispersion curve—Laplacian case

Temporal
Growth rate,

lambda

(0,0)

Spatial wave number, k

k*
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What we need is for each M > 0

σ(Lε) ∩ [−M, 0] → σ(cJ∆) ∩ [−M, 0] as ε→ 0.

Lemma 2 Given a compact subset Θ ⊂ ρ(cJ∆
N), there

exists ϵΘ > 0 such that Θ ⊂ ρ(Lϵ) if ϵ ≤ ϵΘ.

Proof: Assume there is a sequence εk → 0 and λk ∈
Θ ∩ σ(Lεk) (w.l.o.g. λk → λ∗ ∈ Θ) so that for each k,
there is a (Weyl) sequence {vjk}j ⊂ 1⊥ ∩ {∥v∥ = 1} for
which

∥(Lϵk − λkI)v
j
k∥ → 0 as j → ∞.

Choose wk ∈ 1⊥ with ∥wk∥ = 1 and

∥(Lϵk − λkI)wk∥ ≤ 1

k
.

Now

|(Lϵkwk, wk)| ≤ ∥(Lϵk − λkI)wk∥ + |λk| ≤ C.

Apply Lemma 1 to get a subsequence {wk} converging to
some w ∈ H1 and from the second part of that lemma we
find that w is an eigenfunction for cJ∆N corresponding
to λ∗ ∈ Θ, a contradiction.
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Proposition 0.1 Assume that Θ ⊂ ρ(Lϵ) ∩ ρ(cJ∆
N)

for all ϵ ≤ ϵΘ, where Θ ⊂ C is compact. Then there
exist θ > 0 and ϵΘ > 0 such that

∥(λI − Lϵ)
−1∥ ≤ θ for all λ ∈ Θ, ϵ ≤ ϵΘ.

Furthermore,

(λI − Lϵ)
−1u→ (λI − cJ∆

N)−1u

strongly in L2(Ω) as ϵ → 0, for each u ∈ L2(Ω), uni-
formly in λ ∈ Θ.

Theorem 1 Assume that µ ∈ σ(cJ∆
N) and let Bδ =

{λ ∈ C : |λ − µ| ≤ δ} with δ > 0 so small that
Bδ ∩ σ(cJ∆

N) = {µ}. Then there exists ϵδ > 0 such
that Bδ ∩ σ(Lϵ) ̸= ∅ and Bδ ∩ σ(Lϵ) ⊂ σd(Lϵ) for
all ϵ ≤ ϵδ. Furthermore, if dim ker(µI − cJ∆

N) = m
then Lϵ(ϵ ≤ ϵδ) has at most m isolated eigenvalues
µϵj ∈ Bδ(1 ≤ j ≤ m) and the total multiplicity is m.

The proof uses ideas from Kato, including the contour
integral representation of spectral projection operators,
the proposition above, and the convergence of the nonlo-
cal operator to the Laplacian, among other things.
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TURING PATTERNS

Consider the following system for d > 1
∂u

∂t
= Lεu + f (u, v),

∂v

∂t
= dLεv + g(u, v) in Ω× [0,∞).

(4)

We assume that (p, q)T ∈ R2 is a stable equilibrium
of the kinetic system, that is, f (p, q) = g(p, q) = 0
and Jac(f, g)(p, q) has two eigenvalues with negative real
parts. Now consider the linearized R-D system

∂

∂t

(
u
v

)
=

(
1 0
0 d

)(
Lϵu
Lϵv

)
+

(
fu(p, q) fv(p, q)
gu(p, q) gv(p, q)

)(
u
v

)
.

(5)

Let
Aϵ = DLϵ +B (6)

where

D =

(
1 0
0 d

)
, B =

(
fu(p, q) fv(p, q)
gu(p, q) gv(p, q)

)
.
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We impose the Turing conditions for local diffusion:

(H1) fu|(p,q) > 0, trB = (fu + gv)|(p,q) < 0.

(H2) detB = (fugv − fvgu)|(p,q) > 0.

(H3) (fu + gv)
2 − 4(fugv − fvgu)|(p,q) > 0.

(H4) (dfu + gv)|(p,q) > 0.

(H5) (dfu + gv)
2 − 4d(fugv − fvgu)|(p,q) > 0.

Set
A(s) = B + sD.

det[A(s)− λI ] = λ2 − b(s)λ + c(s),

where b(s) = (fu + gv)|(p,q) + s(1 + d),
c(s) = (fugv − fvgu)|(p,q) + s(dfu + gv)|(p,q) + ds2.

s→ λ(s) such that detA(s) = 0 has two real branches
λ−(s) < λ+(s) for all s ≤ 0.

λ−(s) is strictly increasing
λ+(0) < 0, λ+(s) has a unique maximum λ+max attained

at some smax < 0.
Note that s stands for the spectral parameter from Lε

and as with the Laplacian, s ≤ 0 is what concerns us.
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For the Schnakenberg system with nonlocal diffusion:

0

0

Dispersion curve

s

la
m

b
d
a
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Results with Yu Liang.

Lϵu + λu(1− u2) = 0 on [0, π], (NCI)
Compare with

u′′ + λu(1− u2) = 0 (CI)
u′(0) = u′(π) = 0.

For this (Chaffee-Infante) equation there exist bifurcat-
ing branches of solutions at λ = µn = n2, n = 1, 2, · · · ,
the nth branch consisting of functions with n zeros, exist-
ing for all λ > n2, and becoming asymptotic to “±1”.

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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Define G(λ, u) : R× L2 → L2 by
G(λ, u) = Lεu + λf (u),

where f (u) = u− u3, suitably cut off for |u| > 1.
Note that G(λ, 0) ≡ 0, for all λ ∈ R.
Lemma 3 Assume λ ∈ σ(Lϵ) and
dim(N(Gu(λ, 0))) < ∞, then Gu(λ, 0) is a Fredholm
operator with index zero.

Thanks to a bifurcation theorem by Junping Shi and
Xuefeng Wang and the results above
Theorem 2 Suppose that µ ∈ σ(cJ△N) is a
simple eigenvalue of cJ△N (always true in 1-D). And
let
Bδ(µ) = {λ ∈ C : |λ − µ| < δ} with δ > 0 so small
that Bδ ∩ σ(cJ△N) = {µ}. Then
(a) there exists ϵµ,δ > 0 so that when ϵ ≤ ϵµ,δ
Bδ ∩ σ(Lϵ) = {λ0} a simple eigenvalue of Lϵ.
(b) if we write N (Gu(λ, 0)) = span{ω0} and Z is any
complement of N (Gu(λ, 0)) in L2(Ω), then the
solution set of G(λ, u) = 0 near (λ0, 0) consists
precisely of the curves u = 0 and {(λ(s), u(s)) : s ∈
I = (−a, a)}, where λ : I 7→ R is a C2 function and z :
I 7→ Z is a C1 function such that u(s) = sω0 + sz(s),
λ(0) = λ0, z(0) = 0 and λ′

(0) = 0.
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Let µn, n = 1, 2, ... be the positive eigenvalues of

−cJϕ′′ = µϕ on [0, π], ϕ′(0) = ϕ′(π) = 0.

Corollary 1 For fixed N and δ > 0, there exists
εN,δ > 0 such that for all 0 < ε ≤ εN,δ, in each
Bδ(µn), n = 1, 2, ..., N , there exists a simple eigen-
value, λεn, of −Lε with corresponding eigenfunction
ϕεn and nontrivial solution branches to (NIC) of the
form {(λεn(s), uεn(s)) : s ∈ Iεn = (−aεn, aεn)}, where
λεn : I

ε
n 7→ R is a C2 function and zεn : I 7→ Zε

n is a C1

function such that uεn(s) = sϕεn + szεn(s), λεn(0) = λεn,
zεn(0) = 0 and λεn

′
(0) = 0.
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λ = 2, ε = .02
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λ = 3

λ = 4
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What about global bifurcating branches?

Numerically–Yes. Proof missing.

Note that for large λ, solutions lying on the bifurcating branches are
discontinuous.
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To see why this must be so, recall

Lεu + λu(1− u2) = 0 on [0, π], (NCI)

Fix ε > 0. Now make ε2λ huge, > 10, e.g., by taking λ HUGER
and try finding where u = .5, say.
The issue is, unlike the Laplacian, ε2Lε is uniformly bounded!

Open problem 2. Prove global bifurcation.
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Thank you Muchas Gracias
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