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1. Classical Turing Instability

2. Turing Instability with nonlocal diffusion—Spectral theory

3. Chafee-Infante with nonlocal diffusion and an open problem!



TURING PATTERNS

How do such beautiful patterns arise from a single
fertilized egg? How even is symmetry broken?



First, I need to discuss
etgenvalues and eigenfunctions
of differential operators and see what that means for
the movement of a diffusing quantity.

You know about eigenvalues and eigenvectors of matrices:

Mo = \o.

Consider the movement of a spatially distributed heat
u(x,y;t) on a region ).
For simplicity, take 2 = [0, 7] x [0, 27].
With the notation,

A 0%u N 0u
u =
ox?  Oy?’
it can be argued that the heat moves through €2 according
to 9
u
—=A HE
5; — ~u (HE)
and if the boundary of € is insulated, then
0
8—Z =0 on Of.

Through “separation of variables” one finds that solutions
have the form



u(z,y;t) Z Z Cp.mCOs(nax)cos(my/2)e” (n®+m?/4)t ,

n=0 m=0

which we write

3:’ Yt chnm%mx y Mnmt

n=0 m=0

or better still
ulz,y; b Zmbk r,y)e M (Big — Exp),
WlthO:A1<>\2§)\3_'“§>\k§

Note that
A¢n,m(x7 y) — —<TL2 + (m/2)2>¢n,m

SO

OVnm
ot

and

= Awn,m@:a y) — _(n2 + <m/2>2>¢ — _,un,mwn,m

Y(x,yt) = Y(x,y;0)e »m" =0 as t— oo.



If, instead we consider
ur = Au + pu,

then the eigenfunctions, 1, ,, remain the same but the
eigenvalues, [, n» = A, are increased by p and the solu-
tion becomes

u(,yit) = rlw,y;0)e ",
k=1

What happens as t — oo0?



Consider the following system for d > 1
( Ou

?ZAU_‘_f(u?/U)a

\ g——dAzH—g(u V) in Q x[0,00), (1)
u

T =5, on Of).

We assume that (p,q)! € R? is a stable equilibrium of
the kinetic system, that is,

f(p,q) =9(p,q) =0 and Jac(f,g)(p,q)

has two eigenvalues with negative real parts.

Normally, we expect diffusion to favor (stabilize) constant
states. Consider the linearized R-D system

7 ()-69) () G s ().
Let

where



and find the spectrum of A. We may look at the spectrum
of A as it operates on various Fourier modes:
Set

A(s) = Ds+ B,

where s is the spectral parameter from A, so s < 0 is of
relevance. Eigenvalues? Instability of some eigenmodes?

det[A(s) — M| = X* — b(s)\ + c(s),

where b(s) = (f, + gv)|(p7q) +s(1+d),
c(s) = (fugo = fo9)l(pg) T 8(dfu + 90)|(p.g) + ds.



Eigenvalues for different spatial modes:

s — A(s) such that detA(s) = 0 has two real branches
A7 (s) < AT(s) for all s < 0.

One can easily show that

A" (s) is strictly increasing
and

AT(0) < 0 but A™(s) has a unique maximum \f__
attained at some Sy < O.

[s this maximum positive?
i.e., is the s;.x mode unstable?
It is if we impose the Turing conditions:

H1) fulp.g >0,
H2 <fu +gv)| (p,q) <0< (fugv fvgu)‘(p,q)p

(
(
(H3) (fu+ 90)” = 4(fugo — fo90)|(n.g) > 0-
(H4) (dfu + g0)l(p.) > O,

(H5) (

)
)
)
H5) (df. + g9v)* — 4d(fugs — fogu)l gy > 0.
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What motivated the work I want to describe is interest
in higher eigenvalues—

The (Alan) Turning instability — emergence of patterns
in chemical and biological systems morphogenesis.

11



We can consider the system

d
d—TZ = d,Lu + f(u,v)
d
d—: = d,Lv + g(u,v)

and ask if Turing patterns emerge from a homogeneous
steady state which is stable under the kinetics, i.e.,
that state becomes unstable when ‘diffusion’ is added

For stability of a homogeneous steady state (p, q) under
kinetics: det Jac(f, g)(p,q) > 0, Tr Jac(f, g)(p,q) < 0.

Adding diffusion one is directed to consider the spectrum

of

diag(d,, d,) L + Jac(f, g)(p, q).

in some function space.

First we need o(L), but this is not easy to find for a
general kernel and a general domain.

Open problem 1. What is the spectrum of L7
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In Turing’s case L is the Laplacian
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Consider the case 0 = R" with J normalized [ J =1,

Lu(w) = [ (o~ uly)dy - (o)
Now rescale space and consider
J(x)=e"J(x/e)
and write !

Lou(x) = =

[ J: % u —

then one might imagine that as e — 0, L. — A.

Clearly this cannot be true since the difference between
the two operators is an unbounded operator. However,
even if J changes sign

Lemma (B-Chen-Chmaj, 2003, 2005)
For all ¢ € H*(R)

L. — cjAp as e — 0,
where ¢y = [|z]*J(2)/2.
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Similarly, on a bounded domain {2 C R" with
1

La) = | Jle = y)luly) - ula))dy
(and with J> 0) the same result was proved by Cortazar,
et al in 2008. In this case A is the Neumann Laplacian.

Lemma 1 (Cortazar, Elgueta, Rossi, Wolanski, ARMA
2008)
If

|[(Le,wi, w)| < C,
where ||wg|| =1 and e — 0, then {wy} is precompact
in L?, a subsequence converges to some w € H' and

L., wy, converges weakly to c AN w.

We want to know about the spectrum of L. for Turing
instability. Notice that the previous lemmas give a sort of
pointwise (not operator) convergence only. Consequently,
it is a nontrivial question to ask if the spectrum of L. is
close to that of c;AN.

It is clear that o(L.), o(c;AY) C (—o0, 0], since both
operators are self-adj., 0 is in both spectra, and both op-
erators have numerical range in (—o0, 0].
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Actually, it is a trivial question, since the answer is NO!
(A bounded set cannot approximate an unbounded set)

HOWEVER, recall the essentials of the Turing
instability:

Dispersion curve—Laplacian case

Temporal
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(0,0) K

Spatial wave number, k
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What we need is for each M > 0
(L) N [—=M,0] = o(c;A)N[—=M,0] as e — 0.

Lemma 2 Given a compact subset © C p(c;AY), there
exists eg > 0 such that © C p(L.) if € < €.

Proof: Assume there is a sequence €, — 0 and A\, €
ONo(L:,) (wlog A — A € ©) so that for each k,

there is a (Weyl) sequence {v]}; € 10 {|jv|| = 1} for
which |

|(Le, — MeL)v)]| = 0 as j — oo.
Choose wy, € 1+ with |Jwg|| = 1 and

1
(Lo, = My < -

Now
|(Leywr, wi)| < [[(Le, = AeD)wi]| + [Ae] < C.

Apply Lemma 1 to get a subsequence {wy.} converging to
some w € H' and from the second part of that lemma we
find that w is an eigenfunction for c¢;A" corresponding
to A" € O, a contradiction.
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Proposition 0.1 Assume that © C p(L.) N p(c;AY)
for all € < eg, where © C C is compact. Then there
exist 0 > 0 and €g > 0 such that

M —L) Y <0 forall N€O, e<eo.
Furthermore,
(M — L) 'u = (M — ;AN

strongly in L*(Q)) as € — 0, for each u € L*(X)), uni-
formly in X € ©.

Theorem 1 Assume that p € o(c;AY) and let Bs =
A e C: |N—pu| <90} withd > 0 so small that
BsNo(c;AN) = {u}. Then there exists es > 0 such
that Bs N o(L:) # @ and Bs N o(L:) C o4(Le) for
all € < es5. Furthermore, if dimker(ul — c;AYN) =m
then L.(e < €5) has at most m isolated eigenvalues
p5 € Bs(1 < 5 <m) and the total multiplicity is m.

The proof uses ideas from Kato, including the contour
integral representation of spectral projection operators,
the proposition above, and the convergence of the nonlo-
cal operator to the Laplacian, among other things.
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TURING PATTERNS

Consider the following system for d > 1

(
@ — Lsu + f(u,v),
" 4 "
E =dL.v +g<u>7}) i 2% [O’ OO)
\

We assume that (p,q)! € R? is a stable equilibrium

of the kinetic system, that is, f(p,q) = ¢g(p,q) = 0
and Jac(f, g)(p, ¢) has two eigenvalues with negative real
parts. Now consider the linearized R-D system

7 (=G ) ()G 2 ()

(5)
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We impose the Turing conditions for local diffusion:

(HY) fulpg) > 0, trB = (fu+ gu)l(p.g) <O
(H2) detB = (fugv — fugu)lp) > 0

(H3) (fu+ 90)° = 4(fugo — fo9u)l(p.q) > 0-
(H4) (dfu + go)l(p.g) > O

(H5) (dfu + g0)* — 4d(fugv — fugu)lpg) > 0.
Set

A(s) = B+ sD.
det[A(s) — M| = A* — b(s)\ + ¢(s),
where b(s) = (fu + gv)|(p.g) T 5(1 +d),
c(s) = (fugo — fo9u)|(pg) T S(dfu + gu)l(p.q) + ds°.

s — A(s) such that detA(s) = 0 has two real branches
A7 (s) < AT(s) for all s <0.

A" (s) is strictly increasing

AT (0) < 0, A"(s) has a unique maximum A attained
at some Sy < 0.

Note that s stands for the spectral parameter from L.
and as with the Laplacian, s < 0 is what concerns us.
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For the Schnakenberg system with nonlocal diffusion:

Dispersion curve

lambda
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Results with Yu Liang.

Lo+ u(l —u*) =0 on [0, 7], (NCI)
Compare with
u + du(l —u®) =0 (CI)
u'(0) = u(7) = 0.

For this (Chaffee-Infante) equation there exist bifurcat-
ing branches of solutions at A = p, = n?, n=1,2,---,
the n!" branch consisting of functions with n zeros, exist-
ing for all A\ > n?, and becoming asymptotic to “£1”.
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Define G(\,u) : R x L? — L? by
G\ u) = Lou+ Af(u),

where f(u) = u — u?, suitably cut off for |u| > 1.
Note that G(X,0) =0, for all A € R.

Lemma 3 Assume \ € o(L.) and
dim(N(G,(\,0))) < oo, then Gy(A,0) is a Fredholm
operator with index zero.

Thanks to a bifurcation theorem by Junping Shi and
Xuefeng Wang and the results above

Theorem 2 Suppose that i € o(c;AY) is a

simple eigenvalue of c;AY (always true in 1-D). And
let

Bs(p) ={A € C: |A—pu| <6} with d > 0 so small
that Bs N o(c;AY) = {u}. Then

(a) there exists €,5 > 0 so that when € < €,
BsNo(Le) = { o} a simple eigenvalue of L.

(b) if we write N(Gy(\,0)) = span{wo} and Z is any
complement of N'(G,(\,0)) in L*(2), then the
solution set of G(\,u) = 0 near (X, 0) consists
precisely of the curves u = 0 and {(A(s),u(s)) : s €
I =(—a,a)}, where \ : I — R is a C* function and z :
[~ Z is a C! function such that u(s) = swy + sz(s),
A0) = X, 2(0) =0 and X' (0) = 0.
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Let u,, n =1,2,... be the positive eigenvalues of

—cy¢" = p¢ on [0,7],  ¢'(0) = ¢'(m) = 0.

Corollary 1 For fired N and 0 > 0, there exists
ens > 0 such that for all 0 < € < eng, in each
Bs(pn), n = 1,2,..., N, there exists a simple eigen-
value, X\., of —L. with corresponding eigenfunction
¢5 and nontrivial solution branches to (NIC) of the
form {(X(s),us(s)) : s € I = (—a;,a)}, where
A I — R is a C? function and 25 : [ — Z£ is a C!
function such that u(s) = s¢5 + sz5(s), X (0) = A%,
25(0) = 0 and X5 (0) = 0.
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— Chafes-infante
Integral equation
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The maximum of u(x) on [0,«]
2 o © 9 o 9 o o
[ps] L Ry tn s =] o0 w
T T T T T T T

=
-l
T

=
=
m

10 15 20

What about global bifurcating branches?

Numerically—Yes. Proof missing.

Note that for large A, solutions lying on the bifurcating branches are
discontinuous.

30
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A =10000

0.5 I

08 i

To see why this must be so, recall
Lou+u(l —u*) =0 on0,n], (NCT)

Fix ¢ > 0. Now make 2\ huge, > 10, e.g., by taking A HUGER
and try finding where u = .5, say.
The issue is, unlike the Laplacian, 2L, is uniformly bounded!

Open problem 2. Prove global bifurcation.
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Thank you Muchas Gracias

32



